Startseite Propagation criterion for monotone Boolean functions with least vector support set of 1 or 2 elements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Propagation criterion for monotone Boolean functions with least vector support set of 1 or 2 elements

  • Gleb A. Isaev EMAIL logo
Veröffentlicht/Copyright: 15. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The propagation criterion for monotone Boolean functions with least vector support sets consisting of one or two vectors is studied. We obtain necessary and sufficient conditions for the validity of the propagation criterion for a vector in terms of the Hamming weights of vectors in least vector support set depending on whether these vectors share some nonzero components with the given vector. We find the cardinality of the set of vectors satisfying the propagation criterion for such functions.


Originally published in Diskretnaya Matematika (2022) 34, №2, 32–42 (in Russian).


References

[1] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yashchenko V. V., Boolean functions in coding theory and cryptology, M.: MCCMO, 2012 (in Russian), 584 pp.Suche in Google Scholar

[2] Yablonskiy S. V., Introduction to Discrete Mathematics, M.: Vysshaya shkola, 2008 (in Russian), 384 pp.Suche in Google Scholar

[3] Carlet C., Joyner D., Stănică P., Tang D., “Cryptographic properties of monotone Boolean functions”, J. Math. Cryptology, 10:1 (2016), 1–14.Suche in Google Scholar

[4] Carlet C., “On the nonlinearity of monotone Boolean functions”, Cryptography and Communications, 10 (2018), 1051–1061.Suche in Google Scholar

[5] Carlet C., “Boolean Functions for Cryptography and Coding Theory”, Cambridge University Press, Cambridge, 2020, 562 p.Suche in Google Scholar

[6] Carlet C., “Boolean functions for cryptography and error-correcting codes”, in: Crama Y., Hammer P. L., Boolean Methods and Models, Cambridge University Press, Cambridge, 2010, 257–397.Suche in Google Scholar

[7] Crama Y., Hammer P. L., “Boolean Functions, Theory, Algorithms, and Applications”, Cambridge University Press, Cambridge, 2011, 687 p.Suche in Google Scholar

[8] Preneel B., Van Leekwijck W., Van Linden L., Govaerts R., Vandewalle J., “Propagation characteristics of Boolean functions”, EUROCRYPT 1990, Lect. Notes Comput. Sci., 473, 1991, 161–173.Suche in Google Scholar

[9] Rothaus O. S., “On “Bent” Functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305.Suche in Google Scholar

Received: 2022-03-03
Published Online: 2024-04-15
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2024-0006/pdf
Button zum nach oben scrollen