Startseite On affine classification of permutations on the space GF(2)3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On affine classification of permutations on the space GF(2)3

  • Fedor M. Malyshev EMAIL logo
Veröffentlicht/Copyright: 27. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We give an elementary proof that by multiplication on left and right by affine permutations A, BAGL(3, 2) each permutation π : GF(2)3GF(2)3 may be reduced to one of the 4 permutations for which the 3 × 3-matrices consisting of the coefficients of quadratic terms of coordinate functions have as an invariant the rank, which is either 3, or 2, or 1, or 0, respectively. For comparison, we evaluate the number of classes of affine equivalence by the Pólya enumerative theory.


Originally published in Diskretnaya Matematika (2018) 30, №3, 77–87 (in Russian).


Acknowledgment

The author is grateful to A. V. Cheremushkin for useful discussions.

References

[1] Harrison M. A., “On the classification of Boolean functions by the general linear and affine groups”, J. SIAM, 12(2) (1964), 285-299.10.1137/0112026Suche in Google Scholar

[2] Lorens C. S., “Invertible Boolean functions”, IEEE Trans. Electr. Comput., EC-13(5) (1964), 529-541.10.1109/PGEC.1964.263724Suche in Google Scholar

[3] Biryukov A., De Canniere C., Braeken A., Preneel B., “A toolbox for cryptanalysis: linear and affine equivalence algorithms”, EUROCRYPT 2003, Lect. Notes Comput. Sci., 2656, 2003, 33-50.10.1007/3-540-39200-9_3Suche in Google Scholar

[4] De Canniere C., Analysis and design of symmetric encryption algorithms, Doct. diss., K.U. Leuven, 2007.Suche in Google Scholar

[5] Polya G., “Kombinatorische Anzahlbestimmungen für Gruppen und chemische Verbindungen”, Acta Math., 68 (1937), 145- 254.10.1007/BF02546665Suche in Google Scholar

[6] Bruijn de N.G., “A survey of generalizations of Pólya’s enumeration theorem”, Nieuw Archief voor Wiskunde, XIX (1971), 89–112.Suche in Google Scholar

[7] Burnside W., Theory of groups of finite order, 2nd ed., Cambridge, 1911.Suche in Google Scholar

[8] Sachkov V. N., Combinatorial Methods in Discrete Mathematics, Cambridge University Press, 1996, 317 pp.10.1017/CBO9780511666186Suche in Google Scholar

Received: 2018-01-09
Revised: 2018-05-04
Published Online: 2019-12-27
Published in Print: 2019-12-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2019-0035/pdf
Button zum nach oben scrollen