Startseite Boolean functions as points on the hypersphere in the Euclidean space
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Boolean functions as points on the hypersphere in the Euclidean space

  • Oleg A. Logachev EMAIL logo , Sergey N. Fedorov und Valerii V. Yashchenko
Veröffentlicht/Copyright: 12. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new approach to the study of algebraic, combinatorial, and cryptographic properties of Boolean functions is proposed. New relations between functions have been revealed by consideration of an injective mapping of the set of Boolean functions onto the sphere in a Euclidean space. Moreover, under this mapping some classes of functions have extremely regular localizations on the sphere. We introduce the concept of curvature of a Boolean function, which characterizes its proximity (in some sense) to maximally nonlinear functions.


Note: Originally published in Diskretnaya Matematika (2018) 30, №1, 39–55 (in Russian).


Acknowledgement

This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00226-a).

References

[1] Logachev O. A., Saľnikov A. A., Smyshlyaev S. V., Yashchenko V. V., Boolean functions in coding theory and cryptology, Publ. MCCME, Moscow, 2012 (in Russian), 584 pp.10.1090/mmono/241Suche in Google Scholar

[2] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., Amsterdam, North-Holland, 1977.Suche in Google Scholar

[3] Sidelnikov V. M., Coding Theory, Fizmatlit, Moscow, 2008 (in Russian), 324 pp.Suche in Google Scholar

[4] O’Donnell R., Analysis of Boolean Functions, Cambr. Univ. Press, 2014, 417 pp.10.1017/CBO9781139814782Suche in Google Scholar

[5] Rothaus O. S., “On ‘Bent’ Functions”, J. Comb. Theory (A), 20 3 (1976), 300–305.10.1016/0097-3165(76)90024-8Suche in Google Scholar

[6] Terras A., Fourier Analysis on Finite Groups and Applications., Cambr. Univ. Press, 1999, 442 pp.10.1017/CBO9780511626265Suche in Google Scholar

Received: 2018-01-19
Published Online: 2019-04-12
Published in Print: 2019-04-24

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2019-0009/pdf
Button zum nach oben scrollen