Startseite On the reduction property of the number of H-equivalent tuples of states in a discrete Markov chain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the reduction property of the number of H-equivalent tuples of states in a discrete Markov chain

  • Vladimir G. Mikhailov EMAIL logo
Veröffentlicht/Copyright: 9. April 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The phenomenon of reduction of the set of permutations H arising in theorems on the weak convergence of the number of pairs of H-equivalent tuples in a segment of an indecomposable finite Markov chain to discrete distributions of the Poisson type is investigated.


Originally published in Diskretnaya Matematika (2018) 30, No1, 66–76 (in Russian).


Award Identifier / Grant number: 14-50-00005

Funding statement: This work was supported by the Russian Science Foundation under grant no. 14-50-00005.

Acknowledgment

The author is grateful to A.M.Zubkov and A.M.Shoitov for useful discussions of considered problems and valuable remarks.

References

[1] Sachkov V. N., Combinatorial Methods in Discrete Mathematics, Cambridge University Press, 1996, 317 pp.10.1017/CBO9780511666186Suche in Google Scholar

[2] Buravlev S. M., “Matchings up to permutations in sequences of independent trials”, Discrete Math. Appl., 9:1 (1999), 53–78 (In Russian).10.1515/dma.1999.9.1.53Suche in Google Scholar

[3] Buravlev S. M., “Matchings up to the permutations which form a Latin rectangle”, Discrete Math. Appl., 10:1 (2000), 23–48 (In Russian).10.1515/dma.2000.10.1.23Suche in Google Scholar

[4] Mikhailov V. G., Shoitov A. M., “Structural equivalence of 𝑠-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 (In Russian).10.1515/156939203322733273Suche in Google Scholar

[5] Mikhailov V. G., Shoitov A. M., Volgin A. V., “On the structural equivaence of 𝑠-tuples in Markov chains”, Extended Abstracts, The IX Int. Petrozavodsk Conf. «Probabilistic Methods in Discrete Mathematics», 2016, Petrozavodsk, Russia,, 57–62 (In Russian).Suche in Google Scholar

[6] Shoitov A. M., “On a feature of asymptotic behavior of the number of H-equivalent n-tuples collections in a nonequiprobable multinomial scheme”, Trudy po diskrenoi matematike, 7, FIZMATLIT, M., 2003, 227–238 (In Russian).Suche in Google Scholar

[7] Gantmacher F. R., The Theory of Matrices. vol. 1 and vol. 2, Chelsea Publ. Company, New York, 1959, vol. 1: x+374 pp. vol. 2: x+277 pp.Suche in Google Scholar

[8] Karlin S., Ost F., “Some monotonicity properties of Shur powers of matrices and related inequalities”, Linear Algebra & Appl., 68 (1985), 47–65.10.1016/0024-3795(85)90207-1Suche in Google Scholar

[9] Mikhailov V. G., Shoitov A. M., “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303.10.1515/dma-2015-0028Suche in Google Scholar

[10] Mikhailov V. G., Shoitov A. M., “Multiple repetitions of long tuples in a finite Markov chain”, Matem. voprosy. kriptogr., 6:3 (2015), 117–133 (In Russian).10.4213/mvk163Suche in Google Scholar

[11] Mikhailov V. G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113.10.1515/dma-2016-0008Suche in Google Scholar

[12] Zubkov A. M., Kruglov V. I., “On coincidences of tuples in a binary tree with random labels of vertices”, Discrete Math. Appl., 26:3 (2016), 145–153.10.1515/dma-2016-0012Suche in Google Scholar

[13] Mikhailov V. G., “On the probability of existence of substrings with the same structure in a random sequence”, Discrete Math. Appl., 27:6 (2017), 377–386.10.1515/dma-2017-0038Suche in Google Scholar

Received: 2017-9-4
Revised: 2017-10-16
Published Online: 2018-4-9
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0008/html
Button zum nach oben scrollen