Startseite Bounds for the average-case complexity of monotone Boolean functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bounds for the average-case complexity of monotone Boolean functions

  • Aleksandr V. Chashkin EMAIL logo
Veröffentlicht/Copyright: 26. Juni 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider average-case complexity of computing monotone Boolean functions by straight-line programs with a conditional stop over the basis of all Boolean functions of at most two variables. For the set of all n-ary monotone Boolean functions new Shannon-type upper and lower bounds for the average-case complexity as n → ∞ are established.


Originally published in Diskretnaya Matematika (2016) 28, №2, 146-153 (in Russian).


Award Identifier / Grant number: 14-01-00598

Funding statement: This work was supported by the Russian Foundation for Basic Research, project no. 14-01-00598.

References

[1] Zabaluev R. N., “On the mean complexity of monotone functions”, Discrete Math. Appl., 16:2 (2006), 181-194.10.1515/156939206777344629Suche in Google Scholar

[2] Ugol’nikov A. B., “On the realization of monotone functions by schemes from Functional elements”, Problemy kibernetiki, 1976, № 31,167-185 (in Russian).Suche in Google Scholar

[3] Chashkin A. V., “On the average time for the computation of the values of Boolean functions”, J. Applied and Industrial Mathematics, 4:1 (1997), 60-78 (in Russian).Suche in Google Scholar

[4] Chashkin A. V., “On the average time for computing Boolean operators”, J. Applied and Industrial Mathematics, 5:1 (1998), 88-103 (in Russian).10.1016/S0166-218X(02)00293-7Suche in Google Scholar

Received: 2016-1-18
Published Online: 2017-6-26
Published in Print: 2017-6-27

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0017/pdf
Button zum nach oben scrollen