Startseite On coincidences of tuples in a binary tree with random labels of vertices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On coincidences of tuples in a binary tree with random labels of vertices

  • Andrey M. Zubkov EMAIL logo und Vasiliy I. Kruglov EMAIL logo
Veröffentlicht/Copyright: 19. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let all vertices of a complete binary tree of finite height be independently and equiprobably labeled by the elements of some finite alphabet. We consider the numbers of pairs of identical tuples of labels on chains of subsequent vertices in the tree. Exact formulae for the expectations of these numbers are obtained. Convergence to the compound Poisson distribution is proved.


Funding: This work was supported by the Russian Science Foundation under grant no. 14-50-00005.

Originally published in Diskretnaya Matematika (2015) 27, No4, 3-20 (in Russian).


References

[1] Erhardsson T., “Stein’s method for Poisson and compound Poisson approximation”, An introduction to Stein’s method, eds. Barbour A.D., Chen L. H. Y., Singapore Univ. Press, 2005, 61–113.10.1142/9789812567680_0002Suche in Google Scholar

[2] Guibas L. J., Odlyzko A. M., “Long repetitive patterns in random sequences”, Z. Wahrscheinlichkeitstheorie verw. Geb., 53(1980), 241–262.10.1007/BF00531434Suche in Google Scholar

[3] Hoffmann C. M., O’Donnell M. J., “Pattern matching in trees”, J. ACM, 29:1 (1982), 68–95.10.1145/322290.322295Suche in Google Scholar

[4] Karlin S., Ost F., “Counts of long aligned word matches among random letter sequences”, Adv. Appl. Probab., 19:2 (1987), 293–351.10.2307/1427422Suche in Google Scholar

[5] Karnin E.D., “The first repetition of a pattern in a symmetric Bernoulli sequence”, J. Appl. Prob., 20:3 (1983), 413–418.10.2307/3213816Suche in Google Scholar

[6] Rowland E. S., “Pattern avoidance in binary trees”, J. Comb. Theory, Ser. A, 117:6 (2010), 741–758.10.1016/j.jcta.2010.03.004Suche in Google Scholar

[7] Steyaert J.-M., Flajolet P., “Patterns and pattern-matching in trees: an analysis”, Inf. & Control, 58:1 (1983), 19–58.10.1016/S0019-9958(83)80056-4Suche in Google Scholar

[8] Zubkov A.M., Mikhailov V.G., “Limit distributions of random variables associated with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179.10.1137/1119017Suche in Google Scholar

[9] Mikhailov V.G., “Estimate of the accuracy of the compound Poisson approximation for the distribution of the number of matching patterns”, Theory Probab. Appl., 46:4 (2002), 667–675.10.1137/S0040585X97979287Suche in Google Scholar

Received: 2015-4-17
Published Online: 2016-7-19
Published in Print: 2016-7-1

© 2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2016-0012/html
Button zum nach oben scrollen