Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Boolean lattices of multiply Ω-foliated formations
-
Yu.A. Skachkova
Veröffentlicht/Copyright:
2. Februar 2016
Abstract
In the context of a new functional approach to the study of classes of groups, V. A. Vedernikov and M. M. Sorokina introduced Ω-foliated formations, which gave a possibility to systematise a wide class of formations of finite groups. In this paper, we study n-multiply Ω-foliated formations with r-direction φ such that φ0 ≤ φ, φ(A) ⊆ GA′GA for all A ∈ ℑ whose lattice of all n-multiply Ω-foliated subformations with direction φ is Boolean.
Published Online: 2016-2-2
Published in Print: 2002-10-1
© 2016 by Walter de Gruyter Berlin/Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Editorial
- On permanents of random doubly stochastic matrices and asymptotic estimates of the nom hers of Latin rectangles and Latin squares
- On reversal of graph orientation
- The structure of an infinite Sylow subgroup in some periodic Shunkov groups
- Boolean lattices of multiply Ω-foliated formations
- Boolean lattices of n-multiply Ω-bicanonical Fitting classes
- On infinite groups with points
- Linear recurring sequence decimations with exponentially increasing step
- On ω-languages of special billiards
- On relative complexity of quantum and classical branching programs
- Forthcoming Papers
- Contents
Artikel in diesem Heft
- Editorial
- On permanents of random doubly stochastic matrices and asymptotic estimates of the nom hers of Latin rectangles and Latin squares
- On reversal of graph orientation
- The structure of an infinite Sylow subgroup in some periodic Shunkov groups
- Boolean lattices of multiply Ω-foliated formations
- Boolean lattices of n-multiply Ω-bicanonical Fitting classes
- On infinite groups with points
- Linear recurring sequence decimations with exponentially increasing step
- On ω-languages of special billiards
- On relative complexity of quantum and classical branching programs
- Forthcoming Papers
- Contents