Startseite Strongly free sequences and pro-p-groups of cohomological dimension 2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Strongly free sequences and pro-p-groups of cohomological dimension 2

  • Patrick Forré EMAIL logo
Veröffentlicht/Copyright: 14. April 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2011 Heft 658

Abstract

There are a lot of arithmetic consequences if a Galois group of a number field is of cohomological dimension ≦ 2 (cf. [Schmidt, J. reine angew. Math. 596: 115–130, 2006], [Schmidt, Doc. Math. 12: 441–471, 2007], [Schmidt, J. reine angew. Math. 640: 203–235, 2010]). But with class field theory we only have an approximate description of the relators of such groups, which makes it difficult to determine the cohomological dimension. There are several criteria (cf. [Labute, Math. 596: 155–182, 2006], [Labute and Mináč, Mild pro-2-groups and 2-extensions of ℚ with restricted ramification, 2009]) on the so called linking numbers to get cd ≦ 2. The techniques in these papers use Lie algebra theory which become much more complicated for pro-2-groups. Here we will give a more simple and direct proof of the same algebraic criteria for a pro-p-group to be of cd ≦ 2 including the case p = 2.

Received: 2009-12-22
Revised: 2010-05-06
Published Online: 2011-04-14
Published in Print: 2011-September

© Walter de Gruyter Berlin · New York 2011

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle.2011.067/html
Button zum nach oben scrollen