Abstract
We give a new construction of đ-adic heights on varieties over number fields using đ-adic Arakelov theory. In analogy with Zhangâs construction of real-valued heights in terms of adelic metrics, these heights are given in terms of đ-adic adelic metrics on line bundles. In particular, we describe a construction of canonical đ-adic heights on abelian varieties and we show that we recover the canonical MazurâTate height and, for Jacobians, the height constructed by Coleman and Gross. Our main application is a new and simplified approach to the quadratic Chabauty method for the computation of rational points on certain curves over the rationals, by pulling back the canonical height on the Jacobian with respect to a carefully chosen line bundle. We show that our construction allows us to reprove, without using đ-adic Hodge theory or arithmetic fundamental groups, several results due to Balakrishnan and Dogra. Our method also extends to primes đ of bad reduction. One consequence of our work is that, for any canonical height (đ-adic or â-valued) on an abelian variety (and hence on pullbacks to other varieties), the local contribution at a finite prime đ can be constructed using đ-analytic methods.
Funding source: Israel Science Foundation
Award Identifier / Grant number: 912/18
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: MU 4110/1-1
Funding source: Simons Foundation
Award Identifier / Grant number: 546235
Funding source: National Science Foundation
Award Identifier / Grant number: DMS 2401547
Funding statement: The first-named author was supported by grant no 912/18 from the Israel Science Foundation. The second-named author was supported by DFG grant MU 4110/1-1 and by an NWO Vidi grant. The third-named author was supported by Simons Foundation grant 546235 for the collaboration âArithmetic Geometry, Number Theory, and Computationâ and by NSF DMS 2401547. We would like to thank the NWO DIAMANT cluster for supporting a visit of the first- and third-named author to the University of Groningen.
Acknowledgements
We would like to thank Alexander Betts, Francesca Bianchi, Netan Dogra, Bas Edixhoven, Robin de Jong, Eric Katz and Klaus KĂŒnnemann for helpful discussions, and Pierre Colmez for comments on a first version of this paper. We thank the anonymous referees for particularly careful and useful reviews.
References
[1] L.âH.âA. Alpöge, Points on curves, Ph.D. Thesis, Princeton University, 2020. Suche in Google Scholar
[2] N. AdĆŸaga, V. Arul, L. Beneish, M. Chen, S. Chidambaram, T. Keller and B. Wen, Quadratic Chabauty for AtkinâLehner quotients of modular curves of prime level and genus 4, 5, 6, Acta Arith. 208 (2023), no. 1, 15â49. 10.4064/aa220110-7-3Suche in Google Scholar
[3] N. AdĆŸaga, S. Chidambaram, T. Keller and O. Padurariu, Rational points on hyperelliptic AtkinâLehner quotients of modular curves and their coverings, Res. Number Theory 8 (2022), no. 4, Paper No. 87. 10.1007/s40993-022-00388-9Suche in Google Scholar
[4]
V. Arul and J.âS. MĂŒller,
Rational points on
[5] J.âS. Balakrishnan, Iterated Coleman integration for hyperelliptic curves, ANTS XâProceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Ser. 1, Mathematical Sciences Publisher, Berkeley (2013), 41â61. 10.2140/obs.2013.1.41Suche in Google Scholar
[6] J.âS. Balakrishnan, Coleman integration for even-degree models of hyperelliptic curves, LMS J. Comput. Math. 18 (2015), no. 1, 258â265. 10.1112/S1461157015000029Suche in Google Scholar
[7] J.âS. Balakrishnan and A. Besser, Computing local đ-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 2012 (2012), no. 11, 2405â2444. 10.1093/imrn/rnr111Suche in Google Scholar
[8] J.âS. Balakrishnan and A. Besser, ColemanâGross height pairings and the đ-adic sigma function, J. reine angew. Math. 698 (2015), 89â104. 10.1515/crelle-2012-0095Suche in Google Scholar
[9] J.âS. Balakrishnan, A. Besser, F. Bianchi and J.âS. MĂŒller, Explicit quadratic Chabauty over number fields, Israel J. Math. 243 (2021), no. 1, 185â232. 10.1007/s11856-021-2158-5Suche in Google Scholar
[10] J.âS. Balakrishnan, A. Besser and J.âS. MĂŒller, Quadratic Chabauty: đ-adic heights and integral points on hyperelliptic curves, J. reine angew. Math. 720 (2016), 51â79. 10.1515/crelle-2014-0048Suche in Google Scholar
[11] J.âS. Balakrishnan, A. Besser and J.âS. MĂŒller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), no. 305, 1403â1434. 10.1090/mcom/3130Suche in Google Scholar
[12] J.âS. Balakrishnan, A.âJ. Best, F. Bianchi, B. Lawrence, Jâ S. MĂŒller, N. Triantafillou and J. Vonk, Two recent đ-adic approaches towards the (effective) Mordell conjecture, Arithmetic L-functions and differential geometric methods, Progr. Math. 338, BirkhĂ€user/Springer, Cham (2021), 31â74. 10.1007/978-3-030-65203-6_2Suche in Google Scholar
[13] J.âS. Balakrishnan, R.âW. Bradshaw and K.âS. Kedlaya, Explicit Coleman integration for hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci. 6197, Springer, Berlin (2010), 16â31. 10.1007/978-3-642-14518-6_6Suche in Google Scholar
[14] J.âS. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, I: đ-adic heights, Duke Math. J. 167 (2018), no. 11, 1981â2038. 10.1215/00127094-2018-0013Suche in Google Scholar
[15] J.âS. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties, Int. Math. Res. Not. IMRN 2021 (2021), no. 15, 11923â12008. 10.1093/imrn/rnz362Suche in Google Scholar
[16] J.âS. Balakrishnan, N. Dogra, J.âS. MĂŒller, J. Tuitman and J. Vonk, Explicit ChabautyâKim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885â944. 10.4007/annals.2019.189.3.6Suche in Google Scholar
[17] J.âS. Balakrishnan, N. Dogra, J.âS. MĂŒller, J. Tuitman and J. Vonk, Quadratic Chabauty for modular curves: Algorithms and examples, Compos. Math. 159 (2023), no. 6, 1111â1152. 10.1112/S0010437X23007170Suche in Google Scholar
[18] J.âS. Balakrishnan and J. Tuitman, Explicit Coleman integration for curves, Math. Comp. 89 (2020), no. 326, 2965â2984. 10.1090/mcom/3542Suche in Google Scholar
[19] I. Barsotti, Factor sets and differentials on abelian varieties, Trans. Amer. Math. Soc. 84 (1957), 85â108. 10.1090/S0002-9947-1957-0083178-0Suche in Google Scholar
[20] P. Berthelot, L. Breen and W. Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Math. 930, Springer, Berlin 1982. 10.1007/BFb0093025Suche in Google Scholar
[21] A. Besser, Coleman integration using the Tannakian formalism, Math. Ann. 322 (2002), no. 1, 19â48. 10.1007/s002080100263Suche in Google Scholar
[22] A. Besser, The đ-adic height pairings of ColemanâGross and of NekovĂĄĆ, Number theory, CRM Proc. Lecture Notes 36, American Mathematical Society, Providence (2004), 13â25. 10.1090/crmp/036/02Suche in Google Scholar
[23] A. Besser, đ-adic Arakelov theory, J. Number Theory 111 (2005), no. 2, 318â371. 10.1016/j.jnt.2004.11.010Suche in Google Scholar
[24] A. Besser, Heidelberg lectures on Coleman integration, The arithmetic of fundamental groupsâPIA 2010, Contrib. Math. Comput. Sci. 2, Springer, Heidelberg (2012), 3â52. 10.1007/978-3-642-23905-2_1Suche in Google Scholar
[25] A. Besser, đ-adic heights and Vologodsky integration, J. Number Theory 239 (2022), 273â297. 10.1016/j.jnt.2021.12.005Suche in Google Scholar
[26] A. Besser and S.âL. Zerbes, Vologodsky integration on curves with semi-stable reduction, Israel J. Math. 253 (2023), no. 2, 761â770. 10.1007/s11856-022-2377-4Suche in Google Scholar
[27] L.âA. Betts, The motivic anabelian geometry of local heights on abelian varieties, Mem. Amer. Math. Soc. 302 (2024), no. 1518, 1â88. 10.1090/memo/1518Suche in Google Scholar
[28] L.âA. Betts and N. Dogra, The local theory of unipotent Kummer maps and refined Selmer schemes, preprint (2020), https://arxiv.org/abs/1909.05734v2. Suche in Google Scholar
[29] L.âA. Betts, J. Duque-Rosero, S. Hashimoto and P. Spelier, Local heights on hyperelliptic curves and quadratic Chabauty, preprint (2024), https://arxiv.org/abs/2401.05228. Suche in Google Scholar
[30] F. Bianchi, Quadratic Chabauty for (bi)elliptic curves and Kimâs conjecture, Algebra Number Theory 14 (2020), no. 9, 2369â2416. 10.2140/ant.2020.14.2369Suche in Google Scholar
[31] F. Bianchi, đ-Adic sigma functions and heights on Jacobians of genus 2 curves, preprint (2023), https://arxiv.org/abs/2302.03454. Suche in Google Scholar
[32] F. Bianchi, E. Kaya and J.âS. MĂŒller, ColemanâGross heights and đ-adic NĂ©ron functions on Jacobians of genus 2 curves, preprint (2023), https://arxiv.org/abs/2310.15049. Suche in Google Scholar
[33] F. Bianchi and O. Padurariu, Rational points on rank 2 genus 2 bielliptic curves in the LMFDB, LuCaNT: LMFDB, computation, and number theory, Contemp. Math. 796, American Mathematical Society, Providence (2024), 215â242. 10.1090/conm/796/16003Suche in Google Scholar
[34] C. Blakestad, On generalizations of đ-adic Weierstrass sigma and zeta functions, Ph.D. Thesis, University of Colorado, 2018. Suche in Google Scholar
[35] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Math. Monogr. 4, Cambridge University, Cambridge 2006. Suche in Google Scholar
[36] S. Bosch, W. LĂŒtkebohmert and M. Raynaud, NĂ©ron models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin 1990. 10.1007/978-3-642-51438-8Suche in Google Scholar
[37] N. Bruin and M. Stoll, The MordellâWeil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272â306. 10.1112/S1461157009000187Suche in Google Scholar
[38] C. Chabauty, Sur les points rationnels des courbes algĂ©briques de genre supĂ©rieur Ă lâunitĂ©, C. R. Acad. Sci. Paris 212 (1941), 882â885. Suche in Google Scholar
[39] A. Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser. 384, Cambridge University, Cambridge (2011), 1â50. 10.1017/CBO9780511984433.002Suche in Google Scholar
[40] B. Chiarellotto and B. Le Stum, đč-isocristaux unipotents, Compos. Math. 116 (1999), no. 1, 81â110. 10.1023/A:1000602824628Suche in Google Scholar
[41] R.âF. Coleman, Dilogarithms, regulators and đ-adic đż-functions, Invent. Math. 69 (1982), no. 2, 171â208. 10.1007/BF01399500Suche in Google Scholar
[42] R.âF. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765â770. 10.1215/S0012-7094-85-05240-8Suche in Google Scholar
[43] R.âF. Coleman, Torsion points on curves and đ-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111â168. 10.2307/1971194Suche in Google Scholar
[44] R.âF. Coleman, The universal vectorial bi-extension and đ-adic heights, Invent. Math. 103 (1991), no. 3, 631â650. 10.1007/BF01239529Suche in Google Scholar
[45] R.âF. Coleman and E. de Shalit, đ-adic regulators on curves and special values of đ-adic đż-functions, Invent. Math. 93 (1988), no. 2, 239â266. 10.1007/BF01394332Suche in Google Scholar
[46] R.âF. Coleman and B.âH. Gross, đ-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math. 17, Academic Press, Boston (1989), 73â81. 10.2969/aspm/01710073Suche in Google Scholar
[47] R.âF. Coleman and A. Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no. 1, 171â215. 10.1215/S0012-7094-99-09708-9Suche in Google Scholar
[48] P. Colmez, IntĂ©gration sur les variĂ©tĂ©s đ-adiques, AstĂ©risque 248, SociĂ©tĂ© MathĂ©matique de France, Paris 1998. Suche in Google Scholar
[49] P. Äoupek, D.âT.-B.âG. Lilienfeldt, L.âX. Xiao and Z. Yao, Geometric quadratic Chabauty over number fields, Trans. Amer. Math. Soc. 376 (2023), no. 4, 2573â2613. 10.1090/tran/8802Suche in Google Scholar
[50] N. Dogra and S. Le Fourn, Quadratic Chabauty for modular curves and modular forms of rank one, Math. Ann. 380 (2021), no. 1â2, 393â448. 10.1007/s00208-020-02112-3Suche in Google Scholar
[51] T. Dokchitser, V. Dokchitser, C. Maistret and A. Morgan, Arithmetic of hyperelliptic curves over local fields, Math. Ann. 385 (2023), no. 3â4, 1213â1322. 10.1007/s00208-021-02319-ySuche in Google Scholar
[52] J. Duque-Rosero, S. Hashimoto and P. Spelier, Geometric quadratic Chabauty and đ-adic heights, Expo. Math. 41 (2023), no. 3, 631â674. 10.1016/j.exmath.2023.05.003Suche in Google Scholar
[53] B. Edixhoven and G. Lido, Geometric quadratic Chabauty, J. Inst. Math. Jussieu 22 (2023), no. 1, 279â333. 10.1017/S1474748021000244Suche in Google Scholar
[54] G. Faltings, EndlichkeitssĂ€tze fĂŒr abelsche VarietĂ€ten ĂŒber Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349â366. 10.1007/BF01388432Suche in Google Scholar
[55] E.âV. Flynn and N.âP. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), no. 4, 333â352. 10.4064/aa-79-4-333-352Suche in Google Scholar
[56] H. Furusho, đ-adic multiple zeta values. I. đ-adic multiple polylogarithms and the đ-adic KZ equation, Invent. Math. 155 (2004), no. 2, 253â286. 10.1007/s00222-003-0320-9Suche in Google Scholar
[57] W. Gubler, Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 711â760. Suche in Google Scholar
[58] W. Gubler and K. KĂŒnnemann, A tropical approach to nonarchimedean Arakelov geometry, Algebra Number Theory 11 (2017), no. 1, 77â180. 10.2140/ant.2017.11.77Suche in Google Scholar
[59] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar
[60] E. Katz and E. Kaya, đ-adic integration on bad reduction hyperelliptic curves, Int. Math. Res. Not. IMRN2022 (2022), no. 8, 6038â6106. 10.1093/imrn/rnaa272Suche in Google Scholar
[61] E. Katz and D. Litt, p-adic iterated integration on semistable curves, preprint (2022), https://arxiv.org/abs/2202.05340. Suche in Google Scholar
[62] E. Kaya, Explicit Vologodsky integration for hyperelliptic curves, Math. Comp. 91 (2022), no. 337, 2367â2396. 10.1090/mcom/3720Suche in Google Scholar
[63]
M. Kim,
The motivic fundamental group of
[64] M. Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89â133. 10.2977/prims/1234361156Suche in Google Scholar
[65] S. Lang, Fundamentals of Diophantine geometry, Springer, New York 1983. 10.1007/978-1-4757-1810-2Suche in Google Scholar
[66] B. Lawrence and A. Venkatesh, Diophantine problems and đ-adic period mappings, Invent. Math. 221 (2020), no. 3, 893â999. 10.1007/s00222-020-00966-7Suche in Google Scholar
[67] B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math. 35, BirkhĂ€user, Boston (1983), 195â237. 10.1007/978-1-4757-9284-3_9Suche in Google Scholar
[68] W. McCallum and B. Poonen, The method of Chabauty and Coleman, Explicit methods in number theory, Panor. SynthĂšses 36, SociĂ©tĂ© MathĂ©matique de France, Paris (2012), 99â117. Suche in Google Scholar
[69] J.âS. Milne, Abelian varieties, Arithmetic geometry (Storrs 1984), Springer, New York (1986), 103â150. 10.1007/978-1-4613-8655-1_5Suche in Google Scholar
[70] J.âS. Milne, Abelian varieties, unpublished course notes (2008). Suche in Google Scholar
[71] L. Moret-Bailly, MĂ©triques permises, Seminar on arithmetic bundles: The Mordell conjecture (Paris 1983/84), AstĂ©risque 127, SociĂ©tĂ© MathĂ©matique de France, Paris (1985), 29â87. Suche in Google Scholar
[72] J.âS. MĂŒller and M. Stoll, Canonical heights on genus-2 Jacobians, Algebra Number Theory 10 (2016), no. 10, 2153â2234. 10.2140/ant.2016.10.2153Suche in Google Scholar
[73] D. Mumford, Abelian varieties, Hindustan Book, New Delhi 2008. Suche in Google Scholar
[74] J. NekovĂĄĆ, On đ-adic height pairings, SĂ©minaire de thĂ©orie des nombres (Paris 1990â91), Progr. Math. 108, BirkhĂ€user, Boston (1993), 127â202. 10.1007/978-1-4757-4271-8_8Suche in Google Scholar
[75] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ. Nancago 7, Hermann, Paris 1959. Suche in Google Scholar
[76] S. Siksek, Explicit Chabauty over number fields, Algebra Number Theory 7 (2013), no. 4, 765â793. 10.2140/ant.2013.7.765Suche in Google Scholar
[77] M. Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165â182. 10.4064/aa104-2-6Suche in Google Scholar
[78] M. Stoll, An explicit theory of heights for hyperelliptic Jacobians of genus three, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham (2017), 665â715. 10.1007/978-3-319-70566-8_29Suche in Google Scholar
[79] V. Vologodsky, Hodge structure on the fundamental group and its application to đ-adic integration, Mosc. Math. J. 3 (2003), no. 1, 205â247, 260. 10.17323/1609-4514-2003-3-1-205-247Suche in Google Scholar
[80] Y.âG. Zarhin, đ-adic heights on abelian varieties, SĂ©minaire de thĂ©orie des nombres (Paris 1987â88), Progr. Math. 81, BirkhĂ€user, Boston (1990), 317â341. 10.1007/978-1-4612-3460-9_16Suche in Google Scholar
[81] Y.âG. Zarhin, đ-adic abelian integrals and commutative Lie groups, J. Math. Sci. 81 (1996), no. 3, 2744â2750. 10.1007/BF02362339Suche in Google Scholar
[82] S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281â300. Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston