Startseite Anomaly flow: Shi-type estimates and long-time existence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anomaly flow: Shi-type estimates and long-time existence

  • Caleb Suan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 31. Juli 2025

Abstract

We consider the long-time existence of the anomaly flow on a compact complex 3-fold with general slope parameter α . In particular, we obtain integral Shi-type estimates for the flow by adapting an integration-by-parts type argument instead of the usual maximum principle techniques. Following this, we prescribe a sufficient smallness condition on α in order to extend the flow on [ 0 , τ ) to [ 0 , τ + ϵ ) .

A Identities for Hermitian metrics and Chern connections

In this appendix, we list some useful identities that will be used often. The conformally balanced condition d ( Ω ω ω 2 ) = 0 is equivalent to

T i = i log Ω ω , T ̄ j ̄ = ̄ j ̄ log Ω ω .

As such, we see that

( 1 2 Ω ω ) = ( 1 2 Ω ω ) T , ̄ ( 1 2 Ω ω ) = ( 1 2 Ω ω ) T ̄ .

Repeated application of the above yields the following:

(A.1) m ̄ l ( 1 2 Ω ω ) = ( 1 2 Ω ω ) i 1 + + i r + ( r s ) = m j 1 + + j s + s = l i 1 ̄ j 1 T ̄ i s ̄ j s T ̄ i s + 1 T i r T .

We also note the general commutator identities: for a generic tensor 𝐴,

(A.2) m ̄ l ( Δ R A ) = Δ R ( m ̄ l A ) + i = 0 m j = 0 l ( m i ̄ l j A ) ( i ̄ j Rm ) + i = 0 m j = 0 l ( m i ̄ l + 1 j A ) ( i ̄ j T ) + i = 0 m j = 0 l ( m + 1 i ̄ l j A ) ( i ̄ j T ̄ ) ,

and

(A.3) ̄ l m A = r = 0 min ( m , l ) i 0 + + i r = m r j 0 + + j r = l r ( i 0 ̄ j 0 A ) ( i 1 ̄ j 1 Rm ) ( i r ̄ j r Rm ) .

Lastly, we have the divergence theorem for the Chern connection

(A.4) X i V i = X T i V i and X ̄ j ̄ V j ̄ = X T ̄ j ̄ V j ̄ .

Acknowledgements

The author thanks his supervisor Sébastien Picard for suggesting this topic of study and also for many helpful conversations and discussions. The author also thanks the referee for their comments and also for their careful reading of the paper.

References

[1] B. Andreas and M. Garcia-Fernandez, Solutions of the Strominger system via stable bundles on Calabi–Yau threefolds, Comm. Math. Phys. 315 (2012), no. 1, 153–168. 10.1007/s00220-012-1509-9Suche in Google Scholar

[2] A. Ashmore, R. Minasian and Y. Proto, Geometric flows and supersymmetry, Comm. Math. Phys. 405 (2024), no. 1, Paper No. 16. 10.1007/s00220-023-04910-7Suche in Google Scholar

[3] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nuclear Phys. B 258 (1985), no. 1, 46–74. 10.1016/0550-3213(85)90602-9Suche in Google Scholar

[4] M. Carfora and C. Guenther, Scaling and entropy for the RG-2 flow, Comm. Math. Phys. 378 (2020), no. 1, 369–399. 10.1007/s00220-020-03778-1Suche in Google Scholar

[5] A. Clarke, M. Garcia-Fernandez and C. Tipler, 𝑇-dual solutions and infinitesimal moduli of the G 2 -Strominger system, Adv. Theor. Math. Phys. 26 (2022), no. 6, 1669–1704. 10.4310/ATMP.2022.v26.n6.a3Suche in Google Scholar

[6] T. C. Collins and D. H. Phong, Spinor flows with flux, I: Short-time existence and smoothing estimates, preprint (2022), https://arxiv.org/abs/2112.00814v2.Suche in Google Scholar

[7] T. C. Collins, S. Picard and S.-T. Yau, The Strominger system in the square of a Kähler class, Pure Appl. Math. Q. 21 (2025), no. 3, 1015–1035. 10.4310/PAMQ.250115044354Suche in Google Scholar

[8] A. A. da Silva, Jr., M. Garcia-Fernandez, J. D. Lotay and H. N. Sá Earp, Coupled G 2 -instantons, preprint (2024), https://arxiv.org/abs/2404.12937. Suche in Google Scholar

[9] X. de la Ossa, M. Larfors and E. E. Svanes, The infinitesimal moduli space of heterotic G 2 systems, Comm. Math. Phys. 360 (2018), no. 2, 727–775. 10.1007/s00220-017-3013-8Suche in Google Scholar

[10] T. Fei, Z. Huang and S. Picard, A construction of infinitely many solutions to the Strominger system, J. Differential Geom. 117 (2021), no. 1, 23–39. 10.4310/jdg/1609902016Suche in Google Scholar

[11] T. Fei, Z. Huang and S. Picard, The anomaly flow over Riemann surfaces, Int. Math. Res. Not. IMRN 2021 (2021), no. 3, 2134–2165. 10.1093/imrn/rnz076Suche in Google Scholar

[12] T. Fei and S. Picard, Anomaly flow and T-duality, Pure Appl. Math. Q. 17 (2021), no. 3, 1083–1112. 10.4310/PAMQ.2021.v17.n3.a11Suche in Google Scholar

[13] M. Fernández, S. Ivanov, L. Ugarte and D. Vassilev, Quaternionic Heisenberg group and heterotic string solutions with non-constant dilaton in dimensions 7 and 5, Comm. Math. Phys. 339 (2015), no. 1, 199–219. 10.1007/s00220-015-2397-6Suche in Google Scholar

[14] A. Fino, G. Grantcharov and L. Vezzoni, Solutions to the Hull–Strominger system with torus symmetry, Comm. Math. Phys. 388 (2021), no. 2, 947–967. 10.1007/s00220-021-04223-7Suche in Google Scholar

[15] A. Fino and F. Paradiso, Balanced Hermitian structures on almost abelian Lie algebras, J. Pure Appl. Algebra 227 (2023), no. 2, Article ID 107186. 10.1016/j.jpaa.2022.107186Suche in Google Scholar

[16] J.-X. Fu, L.-S. Tseng and S.-T. Yau, Local heterotic torsional models, Comm. Math. Phys. 289 (2009), no. 3, 1151–1169. 10.1007/s00220-009-0789-1Suche in Google Scholar

[17] M. Garcia-Fernandez, T-dual solutions of the Hull–Strominger system on non-Kähler threefolds, J. reine angew. Math. 766 (2020), 137–150. 10.1515/crelle-2019-0013Suche in Google Scholar

[18] M. Garcia-Fernandez, J. Jordan and J. Streets, Non-Kähler Calabi–Yau geometry and pluriclosed flow, J. Math. Pures Appl. (9) 177 (2023), 329–367. 10.1016/j.matpur.2023.07.002Suche in Google Scholar

[19] M. Garcia-Fernandez and R. G. Molina, Harmonic metrics for the Hull-Strominger system and stability, Internat. J. Math. 35 (2024), no. 9, Article ID 2441008. 10.1142/S0129167X24410088Suche in Google Scholar

[20] M. Garcia-Fernandez, R. G. Molina and J. Streets, Pluriclosed flow and the Hull–Strominger system, preprint (2024), https://arxiv.org/abs/2408.11674. Suche in Google Scholar

[21] M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, Math. Ann. 369 (2017), no. 1–2, 539–595. 10.1007/s00208-016-1463-5Suche in Google Scholar

[22] K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the two-loop renormalization group flow, J. Fixed Point Theory Appl. 14 (2013), no. 1, 3–20. 10.1007/s11784-014-0162-7Suche in Google Scholar

[23] M. B. Green and J. H. Schwarz, Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984), no. 1–3, 117–122. 10.1016/0370-2693(84)91565-XSuche in Google Scholar

[24] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306. 10.4310/jdg/1214436922Suche in Google Scholar

[25] F. He and C. Wang, Regularity estimates for the gradient flow of a spinorial energy functional, Math. Res. Lett. 28 (2021), no. 4, 1125–1173. 10.4310/MRL.2021.v28.n4.a7Suche in Google Scholar

[26] C. M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986), no. 4, 357–364. 10.1016/0370-2693(86)91393-6Suche in Google Scholar

[27] P. Ivanov and S. Ivanov, SU ( 3 ) -instantons and G 2 , Spin ( 7 ) -heterotic string solitons, Comm. Math. Phys. 259 (2005), no. 1, 79–102. 10.1007/s00220-005-1396-4Suche in Google Scholar

[28] J. Li and S.-T. Yau, The existence of supersymmetric string theory with torsion, J. Differential Geom. 70 (2005), no. 1, 143–181. 10.4310/jdg/1143572017Suche in Google Scholar

[29] J. McOrist, S. Picard and E. E. Svanes, A heterotic Hermitian–Yang–Mills equivalence, Comm. Math. Phys. 406 (2025), no. 5, Paper No. 107. 10.1007/s00220-025-05272-ySuche in Google Scholar

[30] A. Moroianu, A. J. Murcia and C. S. Shahbazi, The heterotic-Ricci flow and its three-dimensional solitons, J. Geom. Anal. 34 (2024), no. 5, Paper No. 122. 10.1007/s12220-024-01570-4Suche in Google Scholar

[31] A. Otal, L. Ugarte and R. Villacampa, Invariant solutions to the Strominger system and the heterotic equations of motion, Nuclear Phys. B 920 (2017), 442–474. 10.1016/j.nuclphysb.2017.04.021Suche in Google Scholar

[32] D. H. Phong, S. Picard and X. Zhang, Anomaly flows, Comm. Anal. Geom. 26 (2018), no. 4, 955–1008. 10.4310/CAG.2018.v26.n4.a9Suche in Google Scholar

[33] D. H. Phong, S. Picard and X. Zhang, Geometric flows and Strominger systems, Math. Z. 288 (2018), no. 1–2, 101–113. 10.1007/s00209-017-1879-ySuche in Google Scholar

[34] D. H. Phong, S. Picard and X. Zhang, The anomaly flow and the Fu–Yau equation, Ann. PDE 4 (2018), no. 2, Paper No. 13. 10.1007/s40818-018-0049-9Suche in Google Scholar

[35] D. H. Phong, S. Picard and X. Zhang, A flow of conformally balanced metrics with Kähler fixed points, Math. Ann. 374 (2019), no. 3–4, 2005–2040. 10.1007/s00208-019-01844-1Suche in Google Scholar

[36] D. H. Phong, S. Picard and X. Zhang, The anomaly flow on unimodular Lie groups, Advances in complex geometry, Contemp. Math. 735, American Mathematical Society, Providence (2019), 217–237. 10.1090/conm/735/14828Suche in Google Scholar

[37] M. Pujia, The Hull–Strominger system and the anomaly flow on a class of solvmanifolds, J. Geom. Phys. 170 (2021), Article ID 104352. 10.1016/j.geomphys.2021.104352Suche in Google Scholar

[38] M. Pujia and L. Ugarte, The anomaly flow on nilmanifolds, Ann. Global Anal. Geom. 60 (2021), no. 3, 501–537. 10.1007/s10455-021-09781-6Suche in Google Scholar

[39] J. Streets and G. Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 2010 (2010), no. 16, 3101–3133. 10.1093/imrn/rnp237Suche in Google Scholar

[40] J. Streets and G. Tian, Hermitian curvature flow, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 601–634. 10.4171/jems/262Suche in Google Scholar

[41] A. Strominger, Superstrings with torsion, Nuclear Phys. B 274 (1986), no. 2, 253–284. 10.1016/0550-3213(86)90286-5Suche in Google Scholar

[42] Y. Ustinovskiy, Hermitian curvature flow and curvature positivity conditions, Ph.D Thesis, Princeton University, 2018. Suche in Google Scholar

Received: 2024-11-27
Revised: 2025-06-30
Published Online: 2025-07-31
Published in Print: 2025-09-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2025-0051/html
Button zum nach oben scrollen