Abstract
We study semicontinuous maps on varieties of modules over finite-dimensional algebras. We prove that truncated Euler maps are upper or lower semicontinuous. This implies that 𝑔-vectors and 𝐸-invariants of modules are upper semicontinuous. We also discuss inequalities of generic values of some upper semicontinuous maps.
References
[1] T. Adachi, O. Iyama and I. Reiten, 𝜏-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452. 10.1112/S0010437X13007422Suche in Google Scholar
[2] I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Math. Soc. Stud. Texts 65, Cambridge University, Cambridge 2006. 10.1017/CBO9780511614309Suche in Google Scholar
[3] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge Stud. Adv. Math. 36, Cambridge University, Cambridge 1997. Suche in Google Scholar
[4] K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245–287. 10.1006/aima.1996.0053Suche in Google Scholar
[5] A. T. Carroll and C. Chindris, On the invariant theory for acyclic gentle algebras, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3481–3508. 10.1090/S0002-9947-2014-06191-6Suche in Google Scholar
[6] G. Cerulli Irelli, D. Labardini-Fragoso and J. Schröer, Caldero–Chapoton algebras, Trans. Amer. Math. Soc. 367 (2015), no. 4, 2787–2822. 10.1090/S0002-9947-2014-06175-8Suche in Google Scholar
[7] W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. reine angew. Math. 553 (2002), 201–220. 10.1515/crll.2002.100Suche in Google Scholar
[8] H. Derksen and J. Fei, General presentations of algebras, Adv. Math. 278 (2015), 210–237. 10.1016/j.aim.2015.03.012Suche in Google Scholar
[9] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations. I. Mutations, Selecta Math. (N. S.) 14 (2008), no. 1, 59–119. 10.1007/s00029-008-0057-9Suche in Google Scholar
[10] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations II. Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790. 10.1090/S0894-0347-10-00662-4Suche in Google Scholar
[11] P. Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Ottawa 1974), Carleton Math. Lecture Notes 9, Carleton University, Ottawa (1974), Paper No. 10. Suche in Google Scholar
[12] C. Geiß, D. Labardini-Fragoso and J. Schröer, The representation type of Jacobian algebras, Adv. Math. 290 (2016), 364–452. 10.1016/j.aim.2015.09.038Suche in Google Scholar
[13] C. Geiß, D. Labardini-Fragoso and J. Schröer, Generic Caldero–Chapoton functions with coefficients and applications to surface cluster algebras, preprint (2020), https://arxiv.org/abs/2007.05483. Suche in Google Scholar
[14] C. Geiß, D. Labardini-Fragoso and J. Schröer, Schemes of modules over gentle algebras and laminations of surfaces, Selecta Math. (N. S.) 28 (2022), no. 1, Paper No. 8. 10.1007/s00029-021-00710-wSuche in Google Scholar
[15] C. Geiß, D. Labardini-Fragoso and J. Schröer, Geometrization of DWZ-mutations, preprint (2024), in preparation. Suche in Google Scholar
[16] C. Geiss, B. Leclerc and J. Schröer, Generic bases for cluster algebras and the Chamber ansatz, J. Amer. Math. Soc. 25 (2012), no. 1, 21–76. 10.1090/S0894-0347-2011-00715-7Suche in Google Scholar
[17] C. Geiss, B. Leclerc and J. Schröer, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math. 209 (2017), no. 1, 61–158. 10.1007/s00222-016-0705-1Suche in Google Scholar
[18] V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), no. 1, 141–162. 10.1016/0021-8693(82)90105-3Suche in Google Scholar
[19] C. Pfeifer, Email communication. Suche in Google Scholar
[20] P.-G. Plamondon, Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. IMRN 2013 (2013), no. 10, 2368–2420. 10.1093/imrn/rns102Suche in Google Scholar
[21] P.-G. Plamondon, T. Yurikusa and B. Keller, Tame algebras have dense g-vector fans, Int. Math. Res. Not. IMRN 2023 (2023), no. 4, 2701–2747. 10.1093/imrn/rnab105Suche in Google Scholar
[22] F. Qin, Bases for upper cluster algebras and tropical points, J. Eur. Math. Soc. (JEMS) 26 (2024), no. 4, 1255–1312. 10.4171/jems/1308Suche in Google Scholar
[23] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer, Berlin 1984. 10.1007/BFb0072870Suche in Google Scholar
[24] A. Schofield, General representations of quivers, Proc. Lond. Math. Soc. (3) 65 (1992), no. 1, 46–64. 10.1112/plms/s3-65.1.46Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Semicontinuous maps on module varieties
- A lifting principle for canonical stability indices of varieties of general type
- Lifting globally 𝐹-split surfaces to characteristic zero
- Extremal functions for twisted sharp Sobolev inequalities with lower order remainder terms. The high-dimensional case
- The Chow ring of the moduli space of degree 2 quasi-polarized K3 surfaces
- Mixed Hodge structures and Siegel operators
- Ding stability and Kähler–Einstein metrics on manifolds with big anticanonical class
- Rasmussen invariants of Whitehead doubles and other satellites
Artikel in diesem Heft
- Frontmatter
- Semicontinuous maps on module varieties
- A lifting principle for canonical stability indices of varieties of general type
- Lifting globally 𝐹-split surfaces to characteristic zero
- Extremal functions for twisted sharp Sobolev inequalities with lower order remainder terms. The high-dimensional case
- The Chow ring of the moduli space of degree 2 quasi-polarized K3 surfaces
- Mixed Hodge structures and Siegel operators
- Ding stability and Kähler–Einstein metrics on manifolds with big anticanonical class
- Rasmussen invariants of Whitehead doubles and other satellites