Startseite Level structure, arithmetic representations, and noncommutative Siegel linearization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Level structure, arithmetic representations, and noncommutative Siegel linearization

  • Borys Kadets und Daniel Litt ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Mai 2022

Abstract

Let be a prime, k a finitely generated field of characteristic different from , and X a smooth geometrically connected curve over k. Say a semisimple representation of π1ét(Xk¯) is arithmetic if it extends to a finite index subgroup of π1ét(X). We show that there exists an effective constant N=N(X,) such that any semisimple arithmetic representation of π1ét(Xk¯) into GLn(¯), which is trivial mod N, is in fact trivial. This extends a previous result of the second author from characteristic zero to all characteristics. The proof relies on a new noncommutative version of Siegel’s linearization theorem and the -adic form of Baker’s theorem on linear forms in logarithms.

Funding statement: This material is partly based upon work supported by the NSF grant DMS-1928930 while the first author participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2020 semester. The second author was supported by NSF grant DMS-2001196.

Acknowledgements

We are grateful for useful conversations with Hélène Esnault, Moritz Kerz, Samit Dasgupta, and Simion Filip. We would also like to thank the referee for their many extremely helpful suggestions, and for catching and fixing an error in an earlier version of the paper.

References

[1] B. Bakker and J. Tsimerman, p-torsion monodromy representations of elliptic curves over geometric function fields, Ann. of Math. (2) 184 (2016), no. 3, 709–744. 10.4007/annals.2016.184.3.2Suche in Google Scholar

[2] B. Bakker and J. Tsimerman, The geometric torsion conjecture for abelian varieties with real multiplication, J. Differential Geom. 109 (2018), no. 3, 379–409. 10.4310/jdg/1531188186Suche in Google Scholar

[3] B. Conrad, Chow’s K/k-image and K/k-trace, and the Lang–Néron theorem, Enseign. Math. (2) 52 (2006), no. 1–2, 37–108. Suche in Google Scholar

[4] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), no. 52, 137–252. 10.1007/BF02684780Suche in Google Scholar

[5] H. Esnault and M. Kerz, Étale cohomology of rank one -adic local systems in positive characteristic, Selecta Math. (N.S.) 27 (2021), no. 4, Paper No. 58. 10.1007/s00029-021-00681-ySuche in Google Scholar

[6] M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, Geometric dynamics (Rio de Janeiro 1981), Lecture Notes in Math. 1007, Springer, Berlin (1983), 408–447. 10.1007/BFb0061427Suche in Google Scholar

[7] J.-M. Hwang and W.-K. To, Uniform boundedness of level structures on abelian varieties over complex function fields, Math. Ann. 335 (2006), no. 2, 363–377. 10.1007/s00208-006-0752-9Suche in Google Scholar

[8] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241. 10.1007/s002220100174Suche in Google Scholar

[9] D. Litt, Arithmetic representations of fundamental groups I, Invent. Math. 214 (2018), no. 2, 605–639. 10.1007/s00222-018-0810-4Suche in Google Scholar

[10] D. Litt, Arithmetic representations of fundamental groups, II: Finiteness, Duke Math. J. 170 (2021), no. 8, 1851–1897. 10.1215/00127094-2020-0086Suche in Google Scholar

[11] L. Moret-Bailly, Familles de courbes et de variétés abéliennes sur 1. I. Descente des polarisations, Séminaire sur les pinceaux de courbes de genre au moins deux, Astériques 86, Société Mathématique de France, Paris (1981), 109–124. Suche in Google Scholar

[12] L. Moret-Bailly, Familles de courbes et de variétés abéliennes sur 1. II. Exemples, Séminaire sur les pinceaux de courbes de genre au moins deux, Astériques 86, Société Mathématique de France, Paris (1981), 125–140. Suche in Google Scholar

[13] A. M. Nadel, The nonexistence of certain level structures on abelian varieties over complex function fields, Ann. of Math. (2) 129 (1989), no. 1, 161–178. 10.2307/1971489Suche in Google Scholar

[14] H. Rüssmann, Kleine Nenner. II. Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 1–10. Suche in Google Scholar

[15] K. R. Yu, Linear forms in p-adic logarithms. III, Compositio Math. 91 (1994), no. 3, 241–276. Suche in Google Scholar

[16] E. Zehnder, A simple proof of a generalization of a theorem by C. L. Siegel, Geometry and topology (Rio de Janeiro 1976), Lecture Notes in Math. 597, Springer, Berlin (1977), 855–866. 10.1007/BFb0085385Suche in Google Scholar

Received: 2021-09-03
Revised: 2022-03-25
Published Online: 2022-05-25
Published in Print: 2022-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2022-0028/html
Button zum nach oben scrollen