Startseite Skein lasagna modules for 2-handlebodies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Skein lasagna modules for 2-handlebodies

  • Ciprian Manolescu ORCID logo EMAIL logo und Ikshu Neithalath ORCID logo
Veröffentlicht/Copyright: 28. April 2022

Abstract

Morrison, Walker, and Wedrich used the blob complex to construct a generalization of Khovanov–Rozansky homology to links in the boundary of a 4-manifold. The degree zero part of their theory, called the skein lasagna module, admits an elementary definition in terms of certain diagrams in the 4-manifold. We give a description of the skein lasagna module for 4-manifolds without 1- and 3-handles, and present some explicit calculations for disk bundles over S2.

Funding statement: The authors were supported by NSF grants DMS-1708320 and DMS-2003488.

Acknowledgements

We are grateful to John Baldwin, Gage Martin, Sucharit Sarkar, Paul Wedrich and Mike Willis for helpful conversations. We also thank the referees for helpful comments on the paper.

References

[1] S. Akbulut, The Dolgachev surface. Disproving the Harer–Kas–Kirby conjecture, Comment. Math. Helv. 87 (2012), no. 1, 187–241. 10.4171/CMH/252Suche in Google Scholar

[2] S. Akbulut, 4-manifolds, Oxf. Grad. Texts Math. 25, Oxford University, Oxford 2016. 10.1093/acprof:oso/9780198784869.001.0001Suche in Google Scholar

[3] J. A. Baldwin, A. S. Levine and S. Sarkar, Khovanov homology and knot Floer homology for pointed links, J. Knot Theory Ramifications 26 (2017), no. 2, Article ID 1740004. 10.1142/S0218216517400041Suche in Google Scholar

[4] C. Blanchet, An oriented model for Khovanov homology, J. Knot Theory Ramifications 19 (2010), no. 2, 291–312. 10.1142/S0218216510007863Suche in Google Scholar

[5] M. Ehrig, C. Stroppel and D. Tubbenhauer, Generic 𝔤𝔩2-foams, web and arc algebras, preprint (2016), https://arxiv.org/abs/1601.08010v2. Suche in Google Scholar

[6] M. Ehrig, C. Stroppel and D. Tubbenhauer, The Blanchet–Khovanov algebras, Categorification and higher representation theory, Contemp. Math. 683, American Mathematical Society, Providence (2017), 183–226. 10.1090/conm/683/13707Suche in Google Scholar

[7] M. Ehrig, D. Tubbenhauer and P. Wedrich, Functoriality of colored link homologies, Proc. Lond. Math. Soc. (3) 117 (2018), no. 5, 996–1040. 10.1112/plms.12154Suche in Google Scholar

[8] M. H. Freedman, A. Kitaev, C. Nayak, J. K. Slingerland, K. Walker and Z. Wang, Universal manifold pairings and positivity, Geom. Topol. 9 (2005), 2303–2317. 10.2140/gt.2005.9.2303Suche in Google Scholar

[9] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math. 20, American Mathematical Society, Providence 1999. 10.1090/gsm/020Suche in Google Scholar

[10] J. E. Grigsby, A. M. Licata and S. M. Wehrli, Annular Khovanov homology and knotted Schur–Weyl representations, Compos. Math. 154 (2018), no. 3, 459–502. 10.1112/S0010437X17007540Suche in Google Scholar

[11] O. S. Gujral and A. Levine, Khovanov homology and cobordisms between split links, preprint (2020), https://arxiv.org/abs/2009.03406v1. 10.1112/topo.12244Suche in Google Scholar

[12] S. Gunningham, D. Jordan and P. Safronov, The finiteness conjecture for skein modules, preprint (2019), https://arxiv.org/abs/1908.05233v2. 10.1007/s00222-022-01167-0Suche in Google Scholar

[13] M. Hedden and Y. Ni, Khovanov module and the detection of unlinks, Geom. Topol. 17 (2013), no. 5, 3027–3076. 10.2140/gt.2013.17.3027Suche in Google Scholar

[14] M. Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004), 1211–1251. 10.2140/agt.2004.4.1211Suche in Google Scholar

[15] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. 10.1215/S0012-7094-00-10131-7Suche in Google Scholar

[16] M. Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741. 10.2140/agt.2002.2.665Suche in Google Scholar

[17] M. Khovanov, Patterns in knot cohomology. I, Exp. Math. 12 (2003), no. 3, 365–374. 10.1080/10586458.2003.10504505Suche in Google Scholar

[18] M. Khovanov, Crossingless matchings and the cohomology of (n,n) Springer varieties, Commun. Contemp. Math. 6 (2004), no. 4, 561–577. 10.1142/S0219199704001471Suche in Google Scholar

[19] M. Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006), no. 1, 315–327. 10.1090/S0002-9947-05-03665-2Suche in Google Scholar

[20] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1–91. 10.4064/fm199-1-1Suche in Google Scholar

[21] R. Kirby, Problems in low-dimensional topology, Geometric topology (Athens 1993), AMS/IP Stud. Adv. Math. 2, American Mathematical Society, Providence (1997), 35–473. Suche in Google Scholar

[22] P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993), no. 4, 773–826. 10.1016/0040-9383(93)90051-VSuche in Google Scholar

[23] P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797–808. 10.4310/MRL.1994.v1.n6.a14Suche in Google Scholar

[24] P. Lambert-Cole, Bridge trisections in 2 and the Thom conjecture, Geom. Topol. 24 (2020), no. 3, 1571–1614. 10.2140/gt.2020.24.1571Suche in Google Scholar

[25] C. Manolescu, M. Marengon, S. Sarkar and M. Willis, A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds, preprint (2019), https://arxiv.org/abs/1910.08195v1. Suche in Google Scholar

[26] S. Morrison and K. Walker, Blob homology, Geom. Topol. 16 (2012), no. 3, 1481–1607. 10.2140/gt.2012.16.1481Suche in Google Scholar

[27] S. Morrison, K. Walker and P. Wedrich, Invariants of 4-manifolds from Khovanov–Rozansky link homology, preprint (2020), https://arxiv.org/abs/1907.12194v3. Suche in Google Scholar

[28] L. Piccirillo, Shake genus and slice genus, Geom. Topol. 23 (2019), no. 5, 2665–2684. 10.2140/gt.2019.23.2665Suche in Google Scholar

[29] L. Piccirillo, The Conway knot is not slice, Ann. of Math. (2) 191 (2020), no. 2, 581–591. 10.4007/annals.2020.191.2.5Suche in Google Scholar

[30] J. H. Przytycki, When the theories meet: Khovanov homology as Hochschild homology of links, Quantum Topol. 1 (2010), no. 2, 93–109. 10.4171/QT/2Suche in Google Scholar

[31] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419–447. 10.1007/s00222-010-0275-6Suche in Google Scholar

[32] L. Rozansky, A categorification of the stable SU(2) Witten–Reshetikhin–Turaev invariant of links in S2×S1, preprint (2010), https://arxiv.org/abs/1011.1958v1. Suche in Google Scholar

[33] M. Stošić, Khovanov homology of torus links, Topology Appl. 156 (2009), no. 3, 533–541. 10.1016/j.topol.2008.08.004Suche in Google Scholar

[34] M. Willis, Khovanov homology for links in #r(S2×S1), Michigan Math. J. 70 (2021), no. 4, 675–748. 10.1307/mmj/1594281620Suche in Google Scholar

[35] K. Yasui, Elliptic surfaces without 1-handles, J. Topol. 1 (2008), no. 4, 857–878. 10.1112/jtopol/jtn026Suche in Google Scholar

Received: 2020-03-03
Revised: 2022-01-11
Published Online: 2022-04-28
Published in Print: 2022-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2022-0021/html
Button zum nach oben scrollen