Startseite Simultaneous supersingular reductions of CM elliptic curves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simultaneous supersingular reductions of CM elliptic curves

  • Menny Aka EMAIL logo , Manuel Luethi , Philippe Michel ORCID logo und Andreas Wieser
Veröffentlicht/Copyright: 25. Februar 2022

Abstract

We study the simultaneous reductions at several supersingular primes of elliptic curves with complex multiplication. We show – under additional congruence assumptions on the CM order – that the reductions are surjective (and even become equidistributed) on the product of supersingular loci when the discriminant of the order becomes large. This variant of the equidistribution theorems of Duke and Cornut–Vatsal is an(other) application of the recent work of Einsiedler and Lindenstrauss on the classification of joinings of higher-rank diagonalizable actions.

Funding statement: Manuel Luethi acknowledges the support of the SNF (grants 200021_178958, P1EZP2_181725 and 200021_197045) and of the ISF (grant 1483/16). Philippe Michel is partially supported by a DFG-SNF lead agency program grant 200021L_175755 and by the SNF grant 200021_197045. Andreas Wieser was partially supported by SNF grant 20021_178958, SNF Doc. Mobility grant 195737, and ERC 2020 grant no. 833423.

Acknowledgements

We want to express our gratitude towards the referee, whose careful reading of the manuscript improved the exposition and helped us remove an inaccuracy present in a preliminary version of this article. We also thank Valentin Blomer, Farrell Brumley, Brian Conrad, Henri Darmon, Dick Gross, Jennifer-Jayne Jakob, Ilya Khayutin, Bjorn Poonen, Dinakar Ramakrishnan and Tomer Schlank for helpful discussions. Part of this work was carried out while Philippe Michel was visiting the Department of Mathematics at Caltech, while Manuel Luethi was visiting the Einstein institute of Mathematics at the Hebrew University of Jerusalem, and while the authors were visiting the Hausdorff Research Institute during the program “Dynamics: Topology and Numbers”.

References

[1] M. Aka, M. Einsiedler and U. Shapira, Integer points on spheres and their orthogonal grids, J. Lond. Math. Soc. (2) 93 (2016), no. 1, 143–158. 10.1112/jlms/jdv065Suche in Google Scholar

[2] M. Aka, M. Einsiedler and U. Shapira, Integer points on spheres and their orthogonal lattices, Invent. Math. 206 (2016), no. 2, 379–396. 10.1007/s00222-016-0655-7Suche in Google Scholar

[3] M. Aka, M. Einsiedler, and A. Wieser, Planes in four space and four associated CM points, preprint (2019), https://arxiv.org/abs/1901.05833; to appear in Duke Math. J. 10.1215/00127094-2021-0040Suche in Google Scholar

[4] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. 10.2307/1970210Suche in Google Scholar

[5] J. W. S. Cassels, Rational quadratic forms, London Math. Soc. Monogr. 13, Academic Press, London 1978. Suche in Google Scholar

[6] L. Clozel and E. Ullmo, Équidistribution de mesures algébriques, Compos. Math. 141 (2005), no. 5, 1255–1309. 10.1112/S0010437X0500148XSuche in Google Scholar

[7] B. Conrad, Gross–Zagier revisited, Heegner points and Rankin L-series. With an appendix by W. R. Mann, Math. Sci. Res. Inst. Publ. 49, Cambridge University Press, Cambridge (2004), 67–163. 10.1017/CBO9780511756375.006Suche in Google Scholar

[8] C. Cornut, Mazur’s conjecture on higher Heegner points, Invent. Math. 148 (2002), no. 3, 495–523. 10.1007/s002220100199Suche in Google Scholar

[9] C. Cornut and D. Jetchev, Liftings of reduction maps for quaternion algebras, Bull. Lond. Math. Soc. 45 (2013), no. 2, 370–386. 10.1112/blms/bds098Suche in Google Scholar

[10] C. Cornut and V. Vatsal, CM points and quaternion algebras, Doc. Math. 10 (2005), 263–309. 10.4171/dm/189Suche in Google Scholar

[11] C. Cornut and V. Vatsal, Nontriviality of Rankin-Selberg L-functions and CM points, L-functions and Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge University Press, Cambridge (2007), 121–186. 10.1017/CBO9780511721267.005Suche in Google Scholar

[12] D. A. Cox, Primes of the form x 2 + n y 2 : Fermat, class field theory and complex multiplication, John Wiley & Sons, New York 1989. Suche in Google Scholar

[13] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272. 10.1007/BF02940746Suche in Google Scholar

[14] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), no. 1, 73–90. 10.1007/BF01393993Suche in Google Scholar

[15] W. Duke, J. Friedlander and H. Iwaniec, Bounds for automorphic L-functions, Invent. Math. 112 (1993), no. 1, 1–8. 10.1007/s002220000104Suche in Google Scholar

[16] M. Einsiedler and E. Lindenstrauss, Joinings of higher rank torus actions on homogeneous spaces, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 83–127. 10.1007/s10240-019-00103-ySuche in Google Scholar

[17] M. Einsiedler, E. Lindenstrauss, P. Michel and A. Venkatesh, Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J. 148 (2009), no. 1, 119–174. 10.1215/00127094-2009-023Suche in Google Scholar

[18] M. Einsiedler, E. Lindenstrauss, P. Michel and A. Venkatesh, Distribution of periodic torus orbits and Duke’s theorem for cubic fields, Ann. of Math. (2) 173 (2011), no. 2, 815–885. 10.4007/annals.2011.173.2.5Suche in Google Scholar

[19] M. Einsiedler, E. Lindenstrauss, P. Michel and A. Venkatesh, The distribution of closed geodesics on the modular surface, and Duke’s theorem, Enseign. Math. (2) 58 (2012), no. 3–4, 249–313. 10.4171/LEM/58-3-2Suche in Google Scholar

[20] M. Einsiedler and T. Ward, Ergodic theory with a view towards number theory, Grad. Texts in Math. 259, Springer, London 2011. 10.1007/978-0-85729-021-2Suche in Google Scholar

[21] N. Elkies, K. Ono and T. Yang, Reduction of CM elliptic curves and modular function congruences, Int. Math. Res. Not. IMRN 2005 (2005), no. 44, 2695–2707. 10.1155/IMRN.2005.2695Suche in Google Scholar

[22] J. S. Ellenberg, P. Michel and A. Venkatesh, Linnik’s ergodic method and the distribution of integer points on spheres, Automorphic representations and L-functions, Tata Inst. Fundam. Res. Stud. Math. 22, Tata Institute of Fundamental Research, Mumbai (2013), 119–185. Suche in Google Scholar

[23] J. Giraud, Remarque sur une formule de Shimura-Taniyama, Invent. Math. 5 (1968), 231–236. 10.1007/BF01425552Suche in Google Scholar

[24] B. H. Gross, Heegner points on X 0 ( N ) , Modular forms (Durham 1983), Ellis Horwood Ser. Math. Appl. Statist. Oper. Res., Horwood, Chichester (1984), 87–105. Suche in Google Scholar

[25] B. H. Gross, Heights and the special values of L-series, Number theory (Montreal 1985), CMS Conf. Proc. 7, American Mathematical Society, Providence (1987), 115–187. Suche in Google Scholar

[26] S. Herrero, R. Menares, and J. Rivera-Letelier, p-adic distribution of cm points and Hecke orbits II: Linnik equidistribution on the supersingular locus, preprint (2021). 10.2140/ant.2020.14.1239Suche in Google Scholar

[27] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), no. 2, 385–401. 10.1007/BF01389423Suche in Google Scholar

[28] B. Kane, CM liftings of supersingular elliptic curves, J. Théor. Nombres Bordeaux 21 (2009), no. 3, 635–663. 10.5802/jtnb.692Suche in Google Scholar

[29] I. Khayutin, Joint equidistribution of CM points, Ann. of Math. (2) 189 (2019), no. 1, 145–276. 10.4007/annals.2019.189.1.4Suche in Google Scholar

[30] I. Khayutin, Equidistribution on Kuga-Sato varieties of torsion points on CM elliptic curves, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 9, 2949–3016. 10.4171/JEMS/1067Suche in Google Scholar

[31] S. Lang, Elliptic functions. With an appendix by J. Tate, 2nd ed., Grad. Texts in Math. 112, Springer, New York 1987. 10.1007/978-1-4612-4752-4_1Suche in Google Scholar

[32] K. Lauter and B. Viray, On singular moduli for arbitrary discriminants, Int. Math. Res. Not. IMRN 2015 (2015), no. 19, 9206–9250. 10.1093/imrn/rnu223Suche in Google Scholar

[33] S. Lester and M. Radziwiłł, Quantum unique ergodicity for half-integral weight automorphic forms, Duke Math. J. 169 (2020), no. 2, 279–351. 10.1215/00127094-2019-0040Suche in Google Scholar

[34] Y. V. Linnik, Ergodic properties of algebraic fields. Translated from the Russian by M. S. Keane, Ergeb. Math. Grenzgeb. (3) 45, Springer, New York 1968. 10.1007/978-3-642-86631-9Suche in Google Scholar

[35] P. Michel, The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points, Ann. of Math. (2) 160 (2004), no. 1, 185–236. 10.4007/annals.2004.160.185Suche in Google Scholar

[36] P. Michel, Equidistribution, periods and subconvexity, in preparation. Suche in Google Scholar

[37] P. Michel and A. Venkatesh, The subconvexity problem for GL 2 , Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271. 10.1007/s10240-010-0025-8Suche in Google Scholar

[38] J. Milne, Complex multiplication, course notes, Lecture notes (2006), https://www.jmilne.org/math/CourseNotes/cm.html. Suche in Google Scholar

[39] V. Platonov and A. Rapinchuk, Algebraic groups and number theory. Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics 139, Academic Press, Boston 1994. Suche in Google Scholar

[40] M. Radziwiłł and K. Soundararajan, Moments and distribution of central L-values of quadratic twists of elliptic curves, Invent. Math. 202 (2015), no. 3, 1029–1068. 10.1007/s00222-015-0582-zSuche in Google Scholar

[41] M. Ratner, Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups, Duke Math. J. 77 (1995), no. 2, 275–382. 10.1215/S0012-7094-95-07710-2Suche in Google Scholar

[42] J.-P. Serre, Complex multiplication, Algebraic number theory (Brighton 1965), Thompson, Washington, D.C. (1967), 292–296. 10.1007/978-3-642-37726-6_76Suche in Google Scholar

[43] J.-P. Serre, A course in arithmetic. Translated from the French, Grad. Texts in Math. 7, Springer, New York 1973. 10.1007/978-1-4684-9884-4Suche in Google Scholar

[44] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. 10.1007/978-3-642-37726-6_79Suche in Google Scholar

[45] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Grad. Texts in Math. 151, Springer, New York 1994. 10.1007/978-1-4612-0851-8Suche in Google Scholar

[46] J. H. Silverman, The arithmetic of elliptic curves, 2nd ed., Grad. Texts in Math. 106, Springer, Dordrecht 2009. 10.1007/978-0-387-09494-6Suche in Google Scholar

[47] A. Sutherland, Elliptic curves, MIT Course 18.783 (2019), https://math.mit.edu/classes/18.783/2019/lectures.html. Suche in Google Scholar

[48] V. Vatsal, Uniform distribution of Heegner points, Invent. Math. 148 (2002), no. 1, 1–46. 10.1007/s002220100183Suche in Google Scholar

[49] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer, Berlin 1980. 10.1007/BFb0091027Suche in Google Scholar

[50] J. Voight, Quaternion algebras, Grad. Texts in Math. 288, Springer, Cham 2021. 10.1007/978-3-030-56694-4Suche in Google Scholar

[51] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compos. Math. 54 (1985), no. 2, 173–242. Suche in Google Scholar

[52] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér. (4) 2 (1969), 521–560. 10.1090/pspum/020/0314847Suche in Google Scholar

[53] A. Wieser, Linnik’s problems and maximal entropy methods, Monatsh. Math. 190 (2019), no. 1, 153–208. 10.1007/s00605-019-01320-7Suche in Google Scholar

[54] T. Yang, Minimal CM liftings of supersingular elliptic curves, Pure Appl. Math. Q. 4 (2008), no. 4, 1317–1326. 10.4310/PAMQ.2008.v4.n4.a14Suche in Google Scholar

Received: 2020-05-11
Revised: 2021-11-23
Published Online: 2022-02-25
Published in Print: 2022-05-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0086/html
Button zum nach oben scrollen