Startseite Brauer’s Height Zero Conjecture for principal blocks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Brauer’s Height Zero Conjecture for principal blocks

  • Gunter Malle EMAIL logo und Gabriel Navarro
Veröffentlicht/Copyright: 29. Mai 2021

Abstract

We prove the other half of Brauer’s Height Zero Conjecture in the case of principal blocks.

Award Identifier / Grant number: 286237555 – TRR 195

Funding statement: The first author gratefully acknowledges financial support by SFB TRR 195. The research of the second author is supported by Ministerio de Ciencia e Innovación PID2019-103854GB-I00 and FEDER funds.

Acknowledgements

We thank Yanjun Liu, Lizhong Wang, Wolfgang Willems and Jiping Zhang for e-mails prompting our interest in the subject of this paper, and Yanjun Liu for pertinent questions on an earlier version.

References

[1] J. L. Alperin, Isomorphic blocks, J. Algebra 43 (1976), no. 2, 694–698. 10.1016/0021-8693(76)90135-6Suche in Google Scholar

[2] R. Brauer, Number theoretical investigations on groups of finite order, Proceedings of the international symposium on algebraic number theory (Tokyo and Nikko 1955), Science Council of Japan, Tokyo (1956), 55–62. Suche in Google Scholar

[3] R. Brauer, Representations of finite groups, Lectures on modern mathematics. Vol. I, Wiley, New York (1963), 133–175. Suche in Google Scholar

[4] M. Broué and G. Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, Math. Ann. 292 (1992), no. 2, 241–262. 10.1007/BF01444619Suche in Google Scholar

[5] M. Cabanes and M. Enguehard, On unipotent blocks and their ordinary characters, Invent. Math. 117 (1994), no. 1, 149–164. 10.1007/BF01232237Suche in Google Scholar

[6] E. C. Dade, Remarks on isomorphic blocks, J. Algebra 45 (1977), no. 1, 254–258. 10.1016/0021-8693(77)90371-4Suche in Google Scholar

[7] D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups, Math. Surveys Monogr. 40, American Mathematical Society, Providence 1998. 10.1090/surv/040.4Suche in Google Scholar

[8] I. M. Isaacs, Characters of π-separable groups, J. Algebra 86 (1984), no. 1, 98–128. 10.1016/0021-8693(84)90058-9Suche in Google Scholar

[9] I. M. Isaacs, Character theory of finite groups, AMS Chelsea, Providence 2006. 10.1090/chel/359Suche in Google Scholar

[10] I. M. Isaacs, G. Malle and G. Navarro, A reduction theorem for the McKay conjecture, Invent. Math. 170 (2007), no. 1, 33–101. 10.1007/s00222-007-0057-ySuche in Google Scholar

[11] R. Kessar and G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. (2) 178 (2013), no. 1, 321–384. 10.4007/annals.2013.178.1.6Suche in Google Scholar

[12] R. Kessar and G. Malle, Brauer’s height zero conjecture for quasi-simple groups, J. Algebra 475 (2017), 43–60. 10.1016/j.jalgebra.2016.05.010Suche in Google Scholar

[13] W. Kimmerle and R. Sandling, Group-theoretic and group ring-theoretic determination of certain Sylow and Hall subgroups and the resolution of a question of R. Brauer, J. Algebra 171 (1995), no. 2, 329–346. 10.1006/jabr.1995.1014Suche in Google Scholar

[14] G. Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007), 192–220. 10.1090/S1088-4165-07-00312-3Suche in Google Scholar

[15] G. Malle, Extensions of unipotent characters and the inductive McKay condition, J. Algebra 320 (2008), no. 7, 2963–2980. 10.1016/j.jalgebra.2008.06.033Suche in Google Scholar

[16] G. Malle and D. Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge University, Cambridge 2011. 10.1017/CBO9780511994777Suche in Google Scholar

[17] G. O. Michler, A finite simple group of Lie type has p-blocks with different defects, p2, J. Algebra 104 (1986), no. 2, 220–230. 10.1016/0021-8693(86)90212-7Suche in Google Scholar

[18] G. Navarro, Characters and blocks of finite groups, London Math. Soc. Lecture Note Ser. 250, Cambridge University, Cambridge 1998. 10.1017/CBO9780511526015Suche in Google Scholar

[19] G. Navarro, R. Solomon and P. H. Tiep, Abelian Sylow subgroups in a finite group, II, J. Algebra 421 (2015), 3–11. 10.1016/j.jalgebra.2014.08.012Suche in Google Scholar

[20] G. Navarro and B. Späth, On Brauer’s height zero conjecture, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 695–747. 10.4171/JEMS/444Suche in Google Scholar

[21] G. Navarro and P. H. Tiep, Brauer’s height zero conjecture for the 2-blocks of maximal defect, J. reine angew. Math. 669 (2012), 225–247. 10.1515/CRELLE.2011.147Suche in Google Scholar

[22] G. Navarro and P. H. Tiep, Characters of relative p-degree over normal subgroups, Ann. of Math. (2) 178 (2013), no. 3, 1135–1171. 10.4007/annals.2013.178.3.7Suche in Google Scholar

[23] B. Späth, A reduction theorem for the Alperin–McKay conjecture, J. reine angew. Math. 680 (2013), 153–189. 10.1515/crelle.2012.035Suche in Google Scholar

[24] J. Taylor, Action of automorphisms on irreducible characters of symplectic groups, J. Algebra 505 (2018), 211–246. 10.1016/j.jalgebra.2018.03.008Suche in Google Scholar

[25] J. H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. (2) 89 (1969), 405–514. 10.2307/1970648Suche in Google Scholar

[26] W. Willems, p-theory and modular representation theory, J. Algebra 104 (1986), no. 1, 135–140. 10.1016/0021-8693(86)90243-7Suche in Google Scholar

Received: 2020-07-03
Revised: 2021-02-19
Published Online: 2021-05-29
Published in Print: 2021-09-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0024/html
Button zum nach oben scrollen