Startseite Deformations of rational curves in positive characteristic
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Deformations of rational curves in positive characteristic

  • Kazuhiro Ito EMAIL logo , Tetsushi Ito und Christian Liedtke ORCID logo
Veröffentlicht/Copyright: 16. April 2020

Abstract

We study deformations of rational curves and their singularities in positive characteristic. We use this to prove that if a smooth and proper surface in positive characteristic p is dominated by a family of rational curves such that one member has all δ-invariants (resp. Jacobian numbers) strictly less than 12(p-1) (resp. p), then the surface has negative Kodaira dimension. We also prove similar, but weaker results hold for higher-dimensional varieties. Moreover, we show by example that our result is in some sense optimal. On our way, we obtain a sufficient criterion in terms of Jacobian numbers for the normalization of a curve over an imperfect field to be smooth.

Award Identifier / Grant number: 18J22191

Award Identifier / Grant number: 20674001

Award Identifier / Grant number: 26800013

Funding statement:

Funding statement: The first named author is supported by Research Fellowships of Japan Society for the Promotion of Science for Young Scientists KAKENHI Grant Number 18J22191. The second named author is supported by the JSPS KAKENHI Grant Number 20674001 and 26800013. The third named author is supported by the ERC Consolidator Grant 681838 K3CRYSTAL.

Acknowledgements

The authors thank Frank Gounelas and Ichiro Shimada for comments and discussion. The authors thank Hiromu Tanaka for providing invaluable information on the geometry of surfaces over imperfect fields and references. Moreover, the authors thank Gert-Martin Greuel for many comments and suggestions, including a whole report on an earlier version of this article. Finally, the authors thank the referee for remarks and comments, which improve the article.

References

[1] M. Artin, Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4) 7 (1974), 543–567. 10.24033/asens.1279Suche in Google Scholar

[2] F. Bogomolov, B. Hassett and Y. Tschinkel, Constructing rational curves on K3 surfaces, Duke Math. J. 157 (2011), no. 3, 535–550. 10.1215/00127094-1272930Suche in Google Scholar

[3] E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. p. III, Invent. Math. 35 (1976), 197–232. 10.1007/978-1-4757-4265-7_24Suche in Google Scholar

[4] E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. p. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo (1977), 23–42. 10.1017/CBO9780511569197.004Suche in Google Scholar

[5] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge 1993. Suche in Google Scholar

[6] L. Bădescu, Algebraic surfaces. Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author, Universitext, Springer, New York 2001. 10.1007/978-1-4757-3512-3Suche in Google Scholar

[7] R.-O. Buchweitz and G.-M. Greuel, The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), no. 3, 241–281. 10.1007/BF01390254Suche in Google Scholar

[8] F. Charles, The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194 (2013), no. 1, 119–145. 10.1007/s00222-012-0443-ySuche in Google Scholar

[9] Y. Chen and L. Zhang, The subadditivity of the Kodaira dimension for fibrations of relative dimension one in positive characteristics, Math. Res. Lett. 22 (2015), no. 3, 675–696. 10.4310/MRL.2015.v22.n3.a3Suche in Google Scholar

[10] F. R. Cossec and I. V. Dolgachev, Enriques surfaces. I, Progr. Math. 76, Birkhäuser, Boston 1989. 10.1007/978-1-4612-3696-2Suche in Google Scholar

[11] A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 51–93. 10.1007/BF02698644Suche in Google Scholar

[12] E. Esteves and S. Kleiman, Bounds on leaves of one-dimensional foliations. Dedicated to the 50th anniversary of IMPA, Bull. Braz. Math. Soc. (N.S.) 34 (2003), no. 1, 145–169. 10.1007/s00574-003-0006-3Suche in Google Scholar

[13] U. Görtz and T. Wedhorn, Algebraic geometry I: Schemes with examples and exercises, Adv. Lect. Math., Vieweg + Teubner, Wiesbaden 2010. 10.1007/978-3-8348-9722-0Suche in Google Scholar

[14] G.-M. Greuel and H. Kröning, Simple singularities in positive characteristic, Math. Z. 203 (1990), no. 2, 339–354. 10.1007/BF02570742Suche in Google Scholar

[15] G.-M. Greuel, C. Lossen and E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin 2007. Suche in Google Scholar

[16] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 1–231. 10.1007/BF02684322Suche in Google Scholar

[17] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255. 10.1007/BF02684343Suche in Google Scholar

[18] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 1–361. 10.1007/BF02732123Suche in Google Scholar

[19] A. Grothendieck, Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1). Dirigé par A. Grothendieck. Augmenté de deux exposés de M. Raynaud, Lecture Notes in Math. 224, Springer, Berlin, 1971. 10.1007/BFb0058656Suche in Google Scholar

[20] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar

[21] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University Press, Cambridge 2016. 10.1017/CBO9781316594193Suche in Google Scholar

[22] J. Igusa, Betti and Picard numbers of abstract algebraic surfaces, Proc. Natl. Acad. Sci. USA 46 (1960), 724–726. 10.1073/pnas.46.5.724Suche in Google Scholar PubMed PubMed Central

[23] K. Ito, T. Ito and T. Koshikawa, CM liftings of K3 surfaces over finite fields and their applications to the Tate conjecture, preprint (2018), https://arxiv.org/abs/1809.09604. Suche in Google Scholar

[24] W. Kim and K. Madapusi Pera, 2-adic integral canonical models, Forum Math. Sigma 4 (2016), Article ID e28. 10.1017/fms.2016.23Suche in Google Scholar

[25] J. Kollár, Extremal rays on smooth threefolds, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 3, 339–361. 10.24033/asens.1630Suche in Google Scholar

[26] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer, Berlin 1996. 10.1007/978-3-662-03276-3Suche in Google Scholar

[27] E. Kunz, Kähler differentials, Adv. Lect. Math., Friedr. Vieweg & Sohn, Braunschweig 1986. 10.1007/978-3-663-14074-0Suche in Google Scholar

[28] W. E. Lang, Quasi-elliptic surfaces in characteristic three, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 473–500. 10.24033/asens.1373Suche in Google Scholar

[29] C. Liedtke, Algebraic surfaces in positive characteristic, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham (2013), 229–292. 10.1007/978-1-4614-6482-2_11Suche in Google Scholar

[30] C. Liedtke, Lectures on supersingular K3 surfaces and the crystalline Torelli theorem, K3 surfaces and their moduli, Progr. Math. 315, Birkhäuser/Springer, Cham (2016), 171–235. 10.1007/978-3-319-29959-4_8Suche in Google Scholar

[31] C. Liedtke and M. Schütt, Unirational surfaces on the Noether line, Pacific J. Math. 239 (2009), no. 2, 343–356. 10.2140/pjm.2009.239.343Suche in Google Scholar

[32] Q. Liu, Algebraic geometry and arithmetic curves. Translated from the French by Reinie Erné, Oxf. Grad. Texts Math. 6, Oxford University Press, Oxford 2002. 10.1093/oso/9780198502845.001.0001Suche in Google Scholar

[33] S. Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372–393. 10.1215/S0012-7094-39-00532-6Suche in Google Scholar

[34] K. Madapusi Pera, The Tate conjecture for K3 surfaces in odd characteristic, Invent. Math. 201 (2015), no. 2, 625–668. 10.1007/s00222-014-0557-5Suche in Google Scholar

[35] D. Maulik, Supersingular K3 surfaces for large primes. With an appendix by Andrew Snowden, Duke Math. J. 163 (2014), no. 13, 2357–2425. 10.1215/00127094-2804783Suche in Google Scholar

[36] S. Mori and N. Saito, Fano threefolds with wild conic bundle structures, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 6, 111–114. 10.3792/pjaa.79.111Suche in Google Scholar

[37] N. Nygaard and A. Ogus, Tate’s conjecture for K3 surfaces of finite height, Ann. of Math. (2) 122 (1985), no. 3, 461–507. 10.2307/1971327Suche in Google Scholar

[38] N. O. Nygaard, The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math. 74 (1983), no. 2, 213–237. 10.1007/BF01394314Suche in Google Scholar

[39] Z. Patakfalvi and J. Waldron, Singularities of general fibers and the LMMP, preprint (2017), http://arxiv.org/abs/1708.04268. 10.1353/ajm.2022.0009Suche in Google Scholar

[40] M. Raynaud, Contre-exemple au “vanishing theorem” en caractéristique p>0, C. P. Ramanujam—A tribute, Tata Inst. Fund. Res. Studies in Math. 8, Springer, Berlin (1978), 273–278. Suche in Google Scholar

[41] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89. 10.1007/BF01390094Suche in Google Scholar

[42] D. S. Rim, Torsion differentials and deformation, Trans. Amer. Math. Soc. 169 (1972), 257–278. 10.1090/S0002-9947-1972-0342513-4Suche in Google Scholar

[43] A. N. Rudakov and I. R. Shafarevich, Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics. Vol. 18, Akad. Nauk SSSR, Moscow (1981), 115–207. Suche in Google Scholar

[44] A. N. Rudakov and I. R. Šafarevič, Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 4, 848–869. Suche in Google Scholar

[45] E. Sato, A criterion for uniruledness in positive characteristic, Tohoku Math. J. (2) 45 (1993), no. 4, 447–460. 10.2748/tmj/1178225839Suche in Google Scholar

[46] S. Schröer, Singularities appearing on generic fibers of morphisms between smooth schemes, Michigan Math. J. 56 (2008), no. 1, 55–76. 10.1307/mmj/1213972397Suche in Google Scholar

[47] S. Schröer, On genus change in algebraic curves over imperfect fields, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1239–1243. 10.1090/S0002-9939-08-09712-8Suche in Google Scholar

[48] S. Schröer, On fibrations whose geometric fibers are nonreduced, Nagoya Math. J. 200 (2010), 35–57. 10.1215/00277630-2010-011Suche in Google Scholar

[49] I. Shimada, On supercuspidal families of curves on a surface in positive characteristic, Math. Ann. 292 (1992), no. 4, 645–669. 10.1007/BF01444641Suche in Google Scholar

[50] I. Shimada, Singularities of dual varieties in characteristic 2, Algebraic geometry in East Asia—Hanoi 2005, Adv. Stud. Pure Math. 50, Math. Soc. Japan, Tokyo (2008), 299–331. 10.1007/s10711-006-9074-zSuche in Google Scholar

[51] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. 211 (1974), 233–236. 10.1007/BF01350715Suche in Google Scholar

[52] T. Shioda, On unirationality of supersingular surfaces, Math. Ann. 225 (1977), no. 2, 155–159. 10.1007/BF01351719Suche in Google Scholar

[53] T. Shioda and T. Katsura, On Fermat varieties, Tohoku Math. J. (2) 31 (1979), no. 1, 97–115. 10.2748/tmj/1178229881Suche in Google Scholar

[54] H. Tanaka, Behavior of canonical divisors under purely inseparable base changes, J. Reine Angew. Math. 744 (2018), 237–264. 10.1515/crelle-2015-0111Suche in Google Scholar

[55] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400–406. 10.1090/S0002-9939-1952-0047631-9Suche in Google Scholar

[56] G. N. Tjurina, Locally semi-universal flat deformations of isolated singularities of complex spaces, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1026–1058. Suche in Google Scholar

[57] O. Zariski, On Castelnuovo’s criterion of rationality pa=P2=0 of an algebraic surface, Illinois J. Math. 2 (1958), 303–315. 10.1215/ijm/1255454536Suche in Google Scholar

Received: 2018-12-20
Revised: 2020-02-06
Published Online: 2020-04-16
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2020-0003/html
Button zum nach oben scrollen