Abstract
Let
Funding source: Narodowe Centrum Nauki
Award Identifier / Grant number: 2012/05/D/ST1/03227
Funding statement: The author was supported by the National Science Centre Poland, Grant No. 2012/05/D/ST1/03227, and by the Foundation for Polish Science within the Homing Plus programme, cofinanced by the European Union, Regional Development Fund.
Acknowledgements
The author is grateful to Mariusz Koras for discussions concerning producing
References
[1] M. Borodzik and C. Livingstone, Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma 2 (2014), Article ID 28. 10.1017/fms.2014.28Suche in Google Scholar
[2] J. L. Coolidge, A treatise on algebraic plane curves, Dover Publications, New York 1959. Suche in Google Scholar
[3] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández and A. Némethi, On rational cuspidal plane curves, open surfaces and local singularities, Singularity theory, World Scientific, Hackensack (2007), 411–442. 10.1142/9789812707499_0015Suche in Google Scholar
[4]
T. Fenske,
Rational cuspidal plane curves of type
[5]
H. Flenner and M. Zaidenberg,
[6] H. Flenner and M. Zaidenberg, On a class of rational cuspidal plane curves, Manuscripta Math. 89 (1996), no. 4, 439–459. 10.1007/BF02567528Suche in Google Scholar
[7] G. Freudenburg and P. Russell, Open problems in affine algebraic geometry, Affine algebraic geometry, Contemp. Math. 369, American Mathematical Society, Providence (2005), 1–30. 10.1090/conm/369/06801Suche in Google Scholar
[8] T. Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 503–566. Suche in Google Scholar
[9] J. Kollár and S. Kovács, Birational geometry of log surfaces, preprint (1994), https://web.math.princeton.edu/~kollar/FromMyHomePage/BiratLogSurf.ps. Suche in Google Scholar
[10] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge 1998. 10.1017/CBO9780511662560Suche in Google Scholar
[11] M. Koras and K. Palka, The Coolidge–Nagata conjecture, preprint (2015), http://arxiv.org/abs/1502.07149. 10.1215/00127094-2017-0010Suche in Google Scholar
[12] A. Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proc. Lond. Math. Soc. (3) 86 (2003), no. 2, 358–396. 10.1112/S0024611502013874Suche in Google Scholar
[13] R. Lazarsfeld, Positivity in algebraic geometry. II, Ergeb. Math. Grenzgeb. (3) 49, Springer, Berlin 2004. 10.1007/978-3-642-18810-7Suche in Google Scholar
[14] T. Liu, On planar rational cuspidal curves, ProQuest LLC, Ann Arbor 2014; Ph.D. thesis, Massachusetts Institute of Technology, 2014. Suche in Google Scholar
[15] K. Matsuki, Introduction to the Mori program, Universitext, Springer, New York 2002. 10.1007/978-1-4757-5602-9Suche in Google Scholar
[16] T. Matsuoka and F. Sakai, The degree of rational cuspidal curves, Math. Ann. 285 (1989), no. 2, 233–247. 10.1007/BF01443516Suche in Google Scholar
[17] M. Miyanishi, Open algebraic surfaces, CRM Monogr. Ser. 12, American Mathematical Society, Providence 2001. 10.1090/crmm/012Suche in Google Scholar
[18] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), no. 3, 755–788. 10.1215/kjm/1250519728Suche in Google Scholar
[19] M. Miyanishi and S. Tsunoda, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ. 32 (1992), no. 3, 443–450. 10.1215/kjm/1250519486Suche in Google Scholar
[20] N. Mohan Kumar and M. Pavaman Murthy, Curves with negative self-intersection on rational surfaces, J. Math. Kyoto Univ. 22 (1982/83), no. 4, 767–777. 10.1215/kjm/1250521679Suche in Google Scholar
[21] M. Nagata, On rational surfaces. I: Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1960), 351–370. 10.1215/kjm/1250776405Suche in Google Scholar
[22] S. Y. Orevkov, On rational cuspidal curves, Math. Ann. 324 (2002), no. 4, 657–673. 10.1007/s002080000191Suche in Google Scholar
[23]
K. Palka,
Exceptional singular
[24] K. Palka, The Coolidge–Nagata conjecture, part I, Adv. Math. 267 (2014), 1–43. 10.1016/j.aim.2014.07.038Suche in Google Scholar
[25] K. Tono, Defining equations of certain rational cuspidal curves. I, Manuscripta Math. 103 (2000), no. 1, 47–62. 10.1007/s002290070028Suche in Google Scholar
[26] K. Tono, On the number of the cusps of cuspidal plane curves, Math. Nachr. 278 (2005), no. 1–2, 216–221. 10.1002/mana.200310236Suche in Google Scholar
[27] M. G. Zaidenberg and S. Y. Orevkov, On rigid rational cuspidal plane curves, Uspekhi Mat. Nauk 51 (1996), no. 1(307), 149–150. 10.1070/RM1996v051n01ABEH002770Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Limits in 𝒫ℳℱ of Teichmüller geodesics
- Rational connectivity and analytic contractibility
- Uniformization of p-adic curves via Higgs–de Rham flows
- Néron models of jacobians over base schemes of dimension greater than 1
- Cuspidal curves, minimal models and Zaidenberg’s finiteness conjecture
- Moduli of Bridgeland semistable objects on 3-folds and Donaldson–Thomas invariants
- ⌢𝒟-modules on rigid analytic spaces I
- Tilings of amenable groups
- Universal K-matrix for quantum symmetric pairs
Artikel in diesem Heft
- Frontmatter
- Limits in 𝒫ℳℱ of Teichmüller geodesics
- Rational connectivity and analytic contractibility
- Uniformization of p-adic curves via Higgs–de Rham flows
- Néron models of jacobians over base schemes of dimension greater than 1
- Cuspidal curves, minimal models and Zaidenberg’s finiteness conjecture
- Moduli of Bridgeland semistable objects on 3-folds and Donaldson–Thomas invariants
- ⌢𝒟-modules on rigid analytic spaces I
- Tilings of amenable groups
- Universal K-matrix for quantum symmetric pairs