Abstract
Hodge correlators are complex numbers given by certain integrals assigned to a smooth complex curve. We show that they are correlators of a Feynman integral, and describe the real mixed Hodge structure on the pronilpotent completion of the fundamental group of the curve. We introduce motivic correlators, which are elements of the motivic Lie algebra and whose periods are the Hodge correlators. They describe the motivic fundamental group of the curve. We describe variations of real mixed Hodge structures on a variety by certain connections on the product of the variety by twistor plane. We call them twistor connections. In particular, we define the canonical period map on variations of real mixed Hodge structures. We show that the obtained period functions satisfy a simple Maurer–Cartan type non-linear differential equation. Generalizing this, we suggest a DG-enhancement of the subcategory of Saito’s Hodge complexes with smooth cohomology. We show that when the curve varies, the Hodge correlators are the coefficients of the twistor connection describing the corresponding variation of real MHS. Examples of the Hodge correlators include classical and elliptic polylogarithms, and their generalizations. The simplest Hodge correlators on the modular curves are the Rankin–Selberg integrals. Examples of the motivic correlators include Beilinson’s elements in the motivic cohomology, e.g. the ones delivering the Beilinson–Kato Euler system on modular curves.
Dedicated to Alexander Beilinson for his 50th birthday
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-0400449
Award Identifier / Grant number: DMS-0653721
Award Identifier / Grant number: DMS-1059129
Award Identifier / Grant number: DMS-1301776
Funding statement: The author was supported by the NSF grants DMS-0400449, DMS-0653721, DMS-1059129 and DMS-1301776.
Acknowledgements
I am very grateful to Alexander Beilinson for many fruitful discussions, and especially for encouragement over the years to work on Hodge correlators. Many ideas of this work were worked out and several sections written during my stays at the MPI (Bonn) and IHES. A part of this work was written during my stay at the Okayama University (Japan) in May 2005. I am indebted to Hiraoki Nakamura for the hospitality there. I am grateful to these institutions for the hospitality and support. I am very grateful to referees for the extraordinary job. I am grateful to Claus Hertling for pointing out some errors, and sending me notes of his seminar talks in 2008–2009 on the paper.
References
[1] A. A. Beilinson, Higher regulators and values of L-functions (Russian), Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. 24 (1984), 181–238; translation in J. Sov. Math. 30 (1985), 2036–2070. 10.1007/BF02105861Suche in Google Scholar
[2] A. A. Beilinson, Higher regulators of modular curves, Contemp. Math. 55 (1986), 1–34. 10.1090/conm/055.1/862627Suche in Google Scholar
[3] A. A. Beilinson, Height pairings between algebraic cycles, K-theory, arithmetic and geometry, Lecture Notes in Math. 1289, Springer, Berlin (1987), 1–25. 10.1007/BFb0078364Suche in Google Scholar
[4] A. A. Beilinson and P. Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55(2), American Mathematical Society, Providence (1994), 97–121. 10.1090/pspum/055.2/1265552Suche in Google Scholar
[5] A. A. Beilinson and P. Deligne, unpublished preprint on motivic polylogarithms. Suche in Google Scholar
[6] A. A. Beilinson and A. M. Levin, The elliptic polylogarithms, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55(2), American Mathematical Society, Providence (1994), 126–196. 10.1090/pspum/055.2/1265553Suche in Google Scholar
[7] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, vol. 1, Progr. Math. 86, Birkhäuser, Boston (1990), 333–400. 10.1007/978-0-8176-4574-8_9Suche in Google Scholar
[8] A. Borel, Cohomologie des espaces fibrés principaux, Ann. of Math. (2) 57 (1953), 115–207. 10.2307/1969728Suche in Google Scholar
[9]
A. Borel,
Cohomologie de
[10]
F. Brown,
Mixed Tate motives over
[11] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879. 10.1090/S0002-9904-1977-14320-6Suche in Google Scholar
[12] P. Deligne, Hodge theory II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5–57. 10.1007/BF02684692Suche in Google Scholar
[13] P. Deligne, Le group fondamental de la droite projective moine trois points, Galois groups over Q (Berkeley 1987), Math. Sci. Res. Inst. Publ. 16, Springer, New York (1989), 79–297. 10.1007/978-1-4613-9649-9_3Suche in Google Scholar
[14] P. Deligne, Structures des Hodges mixte réeles, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55(1), American Mathematical Society, Providence (1994), 509–516. 10.1090/pspum/055.1/1265541Suche in Google Scholar
[15] P. Deligne and A. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), no. 1, 1–56. 10.1016/j.ansens.2004.11.001Suche in Google Scholar
[16] C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields II, Ann. of Math. (2) 132 (1990), no. 1, 131–158. 10.2307/1971502Suche in Google Scholar
[17] C. Deninger and A. Scholl, The Beilinson conjectures, L-functions and arithmetic (Durham 1989), London Math. Soc. Lecture Note Ser. 153, Cambridge University Press, Cambridge (1991), 173–209. 10.1017/CBO9780511526053.007Suche in Google Scholar
[18] V. G. Drinfeld, Two theorems on modular curves (Russian), Funkts. Anal. Prilozh. 7 (1973), no. 2, 83–84; translation in Funct. Anal. Appl. 7 (1973), 155–156. 10.1007/BF01078890Suche in Google Scholar
[19] V. G. Drinfeld, Elliptic modules (Russian), Mat. Sb. (N.S.) 94 (1974), no. 136, 594–627; translation in Math. USSR Sb. 23 (1974), 561–592. 10.1070/SM1974v023n04ABEH001731Suche in Google Scholar
[20]
V. G. Drinfeld,
On quasitriangular quasi-Hopf algebras and on a group that is closely connected with
[21] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272. 10.1215/S0012-7094-94-07608-4Suche in Google Scholar
[22] A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55(2), American Mathematical Society, Providence (1994), 43–96. 10.1090/pspum/055.2/1265551Suche in Google Scholar
[23] A. B. Goncharov, Chow polylogarithms and regulators, Math. Res. Lett. 2 (1995), no. 1, 95–112. 10.4310/MRL.1995.v2.n1.a9Suche in Google Scholar
[24] A. B. Goncharov, Mixed elliptic motives, Galois representations in arithmetic algebraic geometry, London Math. Soc. Lecture Note Ser. 254, Cambridge University Press, Cambridge (1998), 147–221. 10.1017/CBO9780511662010.005Suche in Google Scholar
[25] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998), no. 4, 497–516. 10.4310/MRL.1998.v5.n4.a7Suche in Google Scholar
[26] A. B. Goncharov, Galois groups, geometry of modular varieties and graphs, Talk at the Arbeitstagung Bonn (1999), http://users.math.yale.edu/users/goncharov/arb99.ps. Suche in Google Scholar
[27] A. B. Goncharov, Multiple ζ-values, Galois groups and geometry of modular varieties, European congress of mathematics, vol. I (Barcelona 2000), Progr. Math. 201, Birkhäuser, Basel (2001), 361–392. 10.1007/978-3-0348-8268-2_21Suche in Google Scholar
[28]
A. B. Goncharov,
The dihedral Lie algebras and Galois symmetries of
[29] A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005), no. 2, 209–284. 10.1215/S0012-7094-04-12822-2Suche in Google Scholar
[30] A. B. Goncharov, Polylogarithms, regulators, and Arakelov motivic complexes, J. Amer. Math. Soc. 18 (2005), no. 1, 1–60. 10.1090/S0894-0347-04-00472-2Suche in Google Scholar
[31] A. B. Goncharov, Euler complexes and geometry of modular varieties, Geom. Funct. Anal. 17 (2007), no. 6, 1872–1914. 10.1007/s00039-007-0643-6Suche in Google Scholar
[32] A. B. Goncharov, Hodge correlators II, Mosc. Math. J. 10 (2010), no. 1, 139–188. 10.17323/1609-4514-2010-10-1-139-188Suche in Google Scholar
[33] A. B. Goncharov and J. Zhao, The Grassmannian trilogarithm, Compos. Math. 127 (2001), no. 1, 83–108. 10.1023/A:1017504115184Suche in Google Scholar
[34] R. Hain, The geometry of the mixed Hodge structure on the fundamental group, Algebraic geometry (Bowdoin 1985), Proc. Sympos. Pure Math. 46(2), American Mathematical Society, Providence (1987), 247–282. 10.1090/pspum/046.2/927984Suche in Google Scholar
[35] R. Hain, Classical polylogarithms, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55(2), American Mathematical Society, Providence (1994), 3–42. 10.1090/pspum/055.2/1265550Suche in Google Scholar
[36] R. Hain and S. Zucker, Unipotent variations of mixed Hodge structure, Invent. Math. 88 (1987), no. 1, 83–124. 10.1007/BF01405093Suche in Google Scholar
[37] A. Huber and J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27–133. 10.4171/dm/46Suche in Google Scholar
[38] M. Kapranov, Real mixed Hodge structures, J. Noncommut. Geom. 6 (2012), no. 2, 321–342. 10.4171/JNCG/93Suche in Google Scholar
[39] M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand mathematical seminars, Birkhäuser, Basel (1993), 173–187. 10.1007/978-1-4612-0345-2_11Suche in Google Scholar
[40] S. Lang, Introduction to Arakelov theory, Springer, New York 1988. 10.1007/978-1-4612-1031-3Suche in Google Scholar
[41] M. Levine, Tate motives and the vanishing conjectures for algebraic K-theory, Algebraic K-theory and Algebraic topology, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer, Dordrecht (1993), 167–188. 10.1007/978-94-017-0695-7_7Suche in Google Scholar
[42] M. Levine, Mixed motives, American Mathematical Society, Providence 1998. 10.1090/surv/057Suche in Google Scholar
[43]
A. Levin,
Variations of
[44] S. Lichtenbaum, The Weil-étale topology for number rings, Ann. of Math. (2) 170 (2009), no. 2, 657–683. 10.4007/annals.2009.170.657Suche in Google Scholar
[45] J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren Math. Wiss. 346, Springer, Berlin 2012. 10.1007/978-3-642-30362-3Suche in Google Scholar
[46] J. I. Manin, Parabolic points and zeta functions of modular curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66.10.1142/9789812830517_0010Suche in Google Scholar
[47] J. Morgan, The algebraic topology of smooth algebraic varieties, Publ. Math. Inst. Hautes Études Sci. 48 (1978), 137–204. 10.1007/BF02684316Suche in Google Scholar
[48] N. Schappacher and A. Scholl, Beilinson’s theorem on modular curves, Beilinson’s conjectures on special values of L-functions (Oberwolfach 1986), Perspect. Math. 4, Academic Press, Boston (1988), 273–304. 10.1016/B978-0-12-581120-0.50015-XSuche in Google Scholar
[49]
A. A. Suslin,
[50] V. Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud. 143, Princeton University Press, Princeton (2000), 188–238. 10.1515/9781400837120.188Suche in Google Scholar
[51] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergeb. Math. Grenzgeb. 88, Springer, Berlin 1977. 10.1007/978-3-642-66209-6Suche in Google Scholar
[52] E. Witten, Perturbative quantum field theory, Quantum fields and strings: A course for mathematicians. Volume 1, American Mathematical Society, Providence (1999), 419–473. Suche in Google Scholar
[53] D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, Arithmetic algebraic geometry (Texel 1989), Progr. Math. 89, Birkhäuser, Boston (1991), 391–430. 10.1007/978-1-4612-0457-2_19Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Hodge correlators
- The standard sign conjecture on algebraic cycles: The case of Shimura varieties
- Ranks of mapping tori via the curve complex
- C*-simplicity of locally compact Powers groups
- Kontsevich spaces of rational curves on Fano hypersurfaces
- Mukai flops and ℙ-twists
- EPW cubes
- Limit lamination theorems for H-surfaces
- Bernstein center of supercuspidal blocks
Artikel in diesem Heft
- Frontmatter
- Hodge correlators
- The standard sign conjecture on algebraic cycles: The case of Shimura varieties
- Ranks of mapping tori via the curve complex
- C*-simplicity of locally compact Powers groups
- Kontsevich spaces of rational curves on Fano hypersurfaces
- Mukai flops and ℙ-twists
- EPW cubes
- Limit lamination theorems for H-surfaces
- Bernstein center of supercuspidal blocks