Startseite Serre weights for U⁢(n)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Serre weights for U(n)

  • Thomas Barnet-Lamb EMAIL logo , Toby Gee ORCID logo und David Geraghty
Veröffentlicht/Copyright: 17. Juni 2015

Abstract

We study the weight part of (a generalisation of) Serre’s conjecture for mod l Galois representations associated to automorphic representations on unitary groups of rank n for odd primes l. Given a modular Galois representation, we use automorphy lifting theorems to prove that it is modular in many other weights. We make no assumptions on the ramification or inertial degrees of l. We give an explicit strengthened result when n=3 and l splits completely in the underlying CM field.

Award Identifier / Grant number: DMS-0841491

Award Identifier / Grant number: DMS-1440703

Funding statement: The second author was partially supported by NSF grant DMS-0841491, a Marie Curie Career Integration Grant, and by an ERC Starting Grant, and the third author was partially supported by NSF grant DMS-1440703.

References

[1] A. Ash, D. Doud and D. Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Math. J. 112 (2002), no. 3, 521–579. 10.1215/S0012-9074-02-11235-6Suche in Google Scholar

[2] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, Local-global compatibility for l=p. II, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 1, 161–175. 10.24033/asens.2212Suche in Google Scholar

[3] T. Barnet-Lamb, T. Gee, D. Geraghty and R. Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501–609. 10.4007/annals.2014.179.2.3Suche in Google Scholar

[4] T. Barnet-Lamb, T. Gee and D. Geraghty, The Sato–Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), no. 2, 411–469. 10.1090/S0894-0347-2010-00689-3Suche in Google Scholar

[5] T. Barnet-Lamb, T. Gee and D. Geraghty, Congruences between Hilbert modular forms: Constructing ordinary lifts, Duke Math. J. 161 (2012), no. 8, 1521–1580. 10.1215/00127094-1593326Suche in Google Scholar

[6] T. Barnet-Lamb, T. Gee and D. Geraghty, Serre weights for rank two unitary groups, Math. Ann. 356 (2013), no. 4, 1551–1598. 10.1007/s00208-012-0893-ySuche in Google Scholar

[7] J. Bellaïche and G. Chenevier, The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math. 147 (2011), no. 5, 1337–1352. 10.1112/S0010437X11005264Suche in Google Scholar

[8] A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J. 161 (2012), no. 12, 2311–2413. 10.1215/00127094-1723706Suche in Google Scholar

[9] A. Caraiani, Monodromy and local-global compatibility for l=p, Algebra Number Theory 8 (2014), no. 7, 1597–1646. 10.2140/ant.2014.8.1597Suche in Google Scholar

[10] G. Chenevier and M. Harris, Construction of automorphic Galois representations. II, Camb. J. Math. 1 (2013), 57–74. 10.4310/CJM.2013.v1.n1.a2Suche in Google Scholar

[11] L. Clozel, M. Harris and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. 10.1007/s10240-008-0016-1Suche in Google Scholar

[12] M. Emerton, T. Gee and F. Herzig, Weight cycling and Serre-type conjectures for unitary groups, Duke Math. J. 162 (2013), no. 9, 1649–1722. 10.1215/00127094-2266365Suche in Google Scholar

[13] M. Emerton, T. Gee, F. Herzig and D. Savitt, Explicit Serre weight conjectures, in preparation. Suche in Google Scholar

[14] H. Gao and T. Liu, A note on potential diagonalizability of crystalline representations, Math. Ann. 360 (2014), no. 1–2, 481–487. 10.1007/s00208-014-1041-7Suche in Google Scholar

[15] T. Gee, A modularity lifting theorem for weight two Hilbert modular forms, Math. Res. Lett. 13 (2006), no. 5–6, 805–811. 10.4310/MRL.2006.v13.n5.a10Suche in Google Scholar

[16] T. Gee, Automorphic lifts of prescribed types, Math. Ann. 350 (2011), no. 1, 107–144. 10.1007/s00208-010-0545-zSuche in Google Scholar

[17] T. Gee and D. Geraghty, Companion forms for unitary and symplectic groups, Duke Math. J. 161 (2012), no. 2, 247–303. 10.1215/00127094-1507376Suche in Google Scholar

[18] T. Gee, T. Liu and D. Savitt, The weight part of Serre’s conjecture for GL(2), Forum Math. Pi 3 (2015), Article ID e2. 10.1017/fmp.2015.1Suche in Google Scholar

[19] T. Gee, T. Liu and D. Savitt, The Buzzard–Diamond–Jarvis conjecture for unitary groups, J. Amer. Math. Soc. 27 (2014), no. 2, 389–435. 10.1090/S0894-0347-2013-00775-4Suche in Google Scholar

[20] T. Gee and D. Savitt, Serre weights for mod p Hilbert modular forms: The totally ramified case, J. reine angew. Math. 660 (2011), 1–26. 10.1515/crelle.2011.079Suche in Google Scholar

[21] R. Guralnick, F. Herzig, R. Taylor and J. Thorne, Adequate subgroups, appendix to: On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855–920. 10.1017/S1474748012000023Suche in Google Scholar

[22] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Ann. of Math. Stud. 151, Princeton University Press, Princeton 2001. 10.1515/9781400837205Suche in Google Scholar

[23] F. Herzig, The weight in a Serre-type conjecture for tame n-dimensional Galois representations, Duke Math. J. 149 (2009), no. 1, 37–116. 10.1215/00127094-2009-036Suche in Google Scholar

[24] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Math. Surveys Monogr. 107, American Mathematical Society, Providence 2003. Suche in Google Scholar

[25] M. Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), no. 2, 513–546. 10.1090/S0894-0347-07-00576-0Suche in Google Scholar

[26] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), no. 3, 1085–1180. 10.4007/annals.2009.170.1085Suche in Google Scholar

[27] J.-P. Labesse, Changement de base CM et séries discrètes, Stabilization of the trace formula, Shimura varieties, and arithmetic applications. Volume 1: On the stabilization of the trace formula, International Press, Somerville (2011), 429–470. Suche in Google Scholar

[28] S. W. Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), no. 3, 1645–1741. 10.4007/annals.2011.173.3.9Suche in Google Scholar

[29] R. Taylor and T. Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, 467–493 (electronic). 10.1090/S0894-0347-06-00542-XSuche in Google Scholar

[30] J. Thorne, On the automorphy of l-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855–920. 10.1017/S1474748012000023Suche in Google Scholar

[31] S. Wortmann, Galois representations of three-dimensional orthogonal motives, Manuscripta Math. 109 (2002), no. 1, 1–28. 10.1007/s002290200287Suche in Google Scholar

Received: 2014-6-18
Revised: 2014-11-6
Published Online: 2015-6-17
Published in Print: 2018-2-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2015-0015/html
Button zum nach oben scrollen