Abstract
The implementation of digital twins, which serve as digital representations of physical industrial installations and their associated industrial processes, is a rapidly evolving technology aligned with the core principles of Industry 4.0 and 5.0. A digital industrial installation enables the collection of data from the real environment for the purpose of reproducing, validating, and simulating both the current and predictive behavior of physical production systems. The aim of this systematic literature review is to provide a comprehensive overview of digital twin technology in the context of the challenges and limitations associated with its implementation in the chemical industry. By employing the method of systematic literature review, the study identified areas of real implementations in the chemical industry, describing both the software applied and the types of processes optimized through the use of digital twins. The findings demonstrate that digital twins represent an innovation within the chemical domain and constitute dynamically evolving methods for process analysis.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Chat GPT: to improve translation.
-
Conflict of interest: All other authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Cozmiuc, D, Petrisor, I. Industrie 4.0 by siemens: steps made today. J Cases Inf Technol 2018;20:30–48. https://doi.org/10.4018/jcit.2018040103.Suche in Google Scholar
2. Perno, M, Hvam, L, Haug, A. Implementation of digital twins in the process industry: a systematic literature review of enablers and barriers. Comput Ind 2022;134:103558. https://doi.org/10.1016/j.compind.2021.103558.Suche in Google Scholar
3. Botín-Sanabria, DM, Mihaita, AS, Peimbert-García, RE, Ramírez-Moreno, MA, Ramírez-Mendoza, RA, Lozoya-Santos, JDJ. Digital twin technology challenges and applications: a comprehensive review. Remote Sens 2022;14:1335. https://doi.org/10.3390/rs14061335.Suche in Google Scholar
4. Jiang, Y, Yin, S, Li, K, Luo, H, Kaynak, O. Industrial applications of digital twins. Philos Trans R Soc Math Phys Eng Sci. 2021;379:20200360. https://doi.org/10.1098/rsta.2020.0360.Suche in Google Scholar PubMed
5. Crespi, N, Drobot, AT, Minerva, R, editors. The digital twin [Internet]. Cham: Springer International Publishing; 2023. [cited 2025 Jul 8]. Available from: https://link.springer.com/10.1007/978-3-031-21343-4.10.1007/978-3-031-21343-4Suche in Google Scholar
6. Opoku, DGJ, Perera, S, Osei-Kyei, R, Rashidi, M. Digital twin application in the construction industry: a literature review. J Build Eng 2021;40:102726. https://doi.org/10.1016/j.jobe.2021.102726.Suche in Google Scholar
7. Quek, HY, Hofmeister, M, Rihm, SD, Yan, J, Lai, J, Brownbridge, G, et al.. Dynamic knowledge graph applications for augmented built environments through “The World Avatar.” J Build Eng 2024;91:109507. https://doi.org/10.1016/j.jobe.2024.109507.Suche in Google Scholar
8. VanDerHorn, E, Mahadevan, S. Digital twin: generalization, characterization and implementation. Decis Support Syst 2021;145:113524. https://doi.org/10.1016/j.dss.2021.113524.Suche in Google Scholar
9. Sunawar, K, Mazhar, T, Shahzad, T, Amir khan, M, Rehman, AU, Hamam, H. Integration of smart grid with industry 5.0: applications, challenges and solutions. Meas: Energy 2025;5:100031. https://doi.org/10.1016/j.meaene.2024.100031.Suche in Google Scholar
10. Chen, C, Zhao, K, Leng, J, Liu, C, Fan, J, Zheng, P. Integrating large language model and digital twins in the context of industry 5.0: framework, challenges and opportunities. Robot Comput Integrated Manuf 2025;94:102982. https://doi.org/10.1016/j.rcim.2025.102982.Suche in Google Scholar
11. Horvat, D, Jäger, A, Lerc, C. Fostering innovation by complementing human competences and emerging technologies: an industry 5.0 perspective. Int J Prod Res 2024:1126–49. https://doi.org/10.1080/00207543.2024.2372009.Suche in Google Scholar
12. Parris, DL, Peachey, JW. A systematic literature review of servant leadership theory in organizational contexts. J Bus Ethics 2013;113:377–93. https://doi.org/10.1007/s10551-012-1322-6.Suche in Google Scholar
13. Czakon, W. Metodyka systematycznego przeglądu literatury. Przegl?d Organ 2011:57–61. https://doi.org/10.33141/po.2011.03.13.Suche in Google Scholar
14. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdiscipl perspect complex syst [Internet]. Cham: Springer International Publishing; 2017 [cited 2025 Jul 8]. p. 85–113. Available from: http://link.springer.com/10.1007/978-3-319-38756-7_4.10.1007/978-3-319-38756-7_4Suche in Google Scholar
15. Shafto, M, Conroy, M, Doyle, R, Glaessgen, E, Kemp, C, LeMoigne, J, et al.. Draft modeling, simulation, information technology & processing roadmap. Technology Area 2010;11:1–32.Suche in Google Scholar
16. Singh, M, Fuenmayor, E, Hinchy, E, Qiao, Y, Murray, N, Devine, D. Digital twin: origin to future. Appl Syst Innov 2021;4:36. https://doi.org/10.3390/asi4020036.Suche in Google Scholar
17. Schluse, M, Rossmann, J. From simulation to experimentable digital twins: simulation-Based development and operation of complex technical systems. In: 2016 IEEE int symp syst eng ISSE [Internet]. Edinburgh, United Kingdom: IEEE; 2016. [cited 2025 Jul 8]. Available from: http://ieeexplore.ieee.org/document/7753162/.10.1109/SysEng.2016.7753162Suche in Google Scholar
18. El, SA. Digital twins: the convergence of multimedia technologies. IEEE Multimed 2018;25:87–92. https://doi.org/10.1109/mmul.2018.023121167.Suche in Google Scholar
19. Tuegel, E. The airframe digital twin: some challenges to realization. In: 53rd AIAAASMEASCEAHSASC struct struct dyn mater conf AIAAASMEAHS adapt struct conf AIAA [Internet]. Honolulu, Hawaii: American Institute of Aeronautics and Astronautics; 2012. [cited 2025 Jul 8]. Available from: http://arc.aiaa.org/doi/abs/10.2514/6.2012-1812.10.2514/6.2012-1812Suche in Google Scholar
20. Kraft, EM. The air force digital thread/digital twin - life cycle integration and use of computational and experimental knowledge. In: 54th AIAA aerosp sci meet [Internet]. San Diego, California, USA: American Institute of Aeronautics and Astronautics; 2016. [cited 2025 Jul 8]. Available from: https://arc.aiaa.org/doi/10.2514/6.2016-0897.10.2514/6.2016-0897Suche in Google Scholar
21. Tuegel, EJ, Ingraffea, AR, Eason, TG, Spottswood, SM. Reengineering aircraft structural life prediction using a digital twin. Int J Aerosp Eng 2011;2011:1–14. https://doi.org/10.1155/2011/154798.Suche in Google Scholar
22. Glaessgen, E, Stargel, D. The digital twin paradigm for future NASA and U.S. air force vehicles. In: 53rd AIAAASMEASCEAHSASC struct struct dyn mater conf AIAAASMEAHS adapt struct conf AIAA [Internet]. Honolulu, Hawaii: American Institute of Aeronautics and Astronautics; 2012. [cited 2025 Jul 8]. Available from: http://arc.aiaa.org/doi/abs/10.2514/6.2012-1818.10.2514/6.2012-1818Suche in Google Scholar
23. Rosen, R, Von Wichert, G, Lo, G, Bettenhausen, KD. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 2015;48:567–72. https://doi.org/10.1016/j.ifacol.2015.06.141.Suche in Google Scholar
24. Digital Twin. CIRP encycl prod eng [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2019:1–8 pp. [cited 2025 Jul 8] Available from: http://link.springer.com/10.1007/978-3-642-35950-7_16870-1.Suche in Google Scholar
25. Lu, Y, Liu, C, Wang, KI-K, Huang, H, Xu, X. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot Comput-Integr Manuf 2020;61:101837. https://doi.org/10.1016/j.rcim.2019.101837.Suche in Google Scholar
26. Schleich, B, Anwer, N, Mathieu, L, Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Ann 2017;66:141–4. https://doi.org/10.1016/j.cirp.2017.04.040.Suche in Google Scholar
27. Minerva, R, Lee, GM, Crespi, N. Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc IEEE 2020;108:1785–824. https://doi.org/10.1109/jproc.2020.2998530.Suche in Google Scholar
28. Liu, Y, Feng, J, Lu, J, Zhou, S. A review of digital twin capabilities, technologies, and applications based on the maturity model. Adv Eng Inform 2024;62. https://doi.org/10.1016/j.aei.2024.102592.Suche in Google Scholar
29. Wright, L, Davidson, S. How to tell the difference between a model and a digital twin. Adv Model Simul Eng Sci 2020;7. https://doi.org/10.1186/s40323-020-00147-4.Suche in Google Scholar
30. Kritzinger, W, Karner, M, Traar, G, Henjes, J, Sihn, W. Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 2018;51:1016–22. https://doi.org/10.1016/j.ifacol.2018.08.474.Suche in Google Scholar
31. Bauernhansl, T, Hartleif, S, Felix, T. The digital shadow of production – a concept for the effective and efficient information supply in dynamic industrial environments. Proced CIRP 2018;72:69–74. https://doi.org/10.1016/j.procir.2018.03.188.Suche in Google Scholar
32. Fuller, A, Fan, Z, Day, C, Barlow, C. Digital twin: enabling technologies, challenges and open research. IEEE Access 2020;8:108952–71. https://doi.org/10.1109/access.2020.2998358.Suche in Google Scholar
33. Grzesik, W. Digital twin in manufacturing. Part I. State of the art, architecture and applications. Mechanika 2023:8–13. https://doi.org/10.17814/mechanik.2023.1.1.Suche in Google Scholar
34. Comparative analysis of platforms for designing a digital twin. In: Lect notes mech eng [Internet]. Cham: Springer International Publishing; 2020. p. 3–12. [cited 2025 Jul 8] Available from: https://link.springer.com/10.1007/978-3-030-50794-7_1.Suche in Google Scholar
35. Tao, F, Zhang, M, Liu, Y, Nee, AYC. Digital twin driven prognostics and health management for complex equipment. CIRP Ann 2018;67:169–72. https://doi.org/10.1016/j.cirp.2018.04.055.Suche in Google Scholar
36. Digital twin: 5 challenges for 7 benefits [Internet] 2019 [cited 2025 July 07]. Available from: https://www.ingenium-magazine.it/en/digital-twin-6-sfide-per-7-benefici/.2020.Suche in Google Scholar
37. Gagne Mapp, MR. Digital twins, another reason to worry about the IOt and data security [Internet] 2020. [cited 2025 July 07]. Available from: https://irishtechnews.ie/digital-twins-iot-and-data-security/.Suche in Google Scholar
38. Goasduff, L. Confront key challenges to boost digital twin success [Internet] 2018. [cited 2025 July 07]. Available from: https://www.gartner.com/smarterwithgartner/confront-key-challenges-to-boost-digital-twin-success.Suche in Google Scholar
39. gPROMS process simulation for the digital age [Internet] 2019 [cited 2025 July 07]. Available from: https://www.siemens.com/global/en/products/automation/industry-software/gproms-digital-process-design-and-operations/gproms-modelling-environments/gproms-process.html.Suche in Google Scholar
40. Asteasuain, M, Tonelli, SM, Brandolin, A, Bandoni, JA. Dynamic simulation and optimisation of tubular polymerisation reactors in gPROMS. Comput Chem Eng 2001;25:509–15. https://doi.org/10.1016/s0098-1354(01)00631-7.Suche in Google Scholar
41. Tanvir, MS, Mujtaba, IM. Optimisation of design and operation of MSF desalination process using MINLP technique in gPROMS. Desalination 2008;222:419–30. https://doi.org/10.1016/j.desal.2007.02.068.Suche in Google Scholar
42. Näf, UG. Stochastic simulation using gPROMS. Comput Chem Eng 1994;18:S743–7. https://doi.org/10.1016/0098-1354(94)80121-5.Suche in Google Scholar
43. COMOS – making data work [Internet] 2018 [cited 2025 July 07]. Available from: https://www.siemens.com/global/en/products/automation/industry-software/plant-engineering-software-comos.html.Suche in Google Scholar
44. Zheng, L, Furimsky, E. ASPEN simulation of cogeneration plants. Energy Convers Manag 2003;44:1845–51. https://doi.org/10.1016/S0196-8904(02)00190-5.Suche in Google Scholar
45. Haydary, J. Chemical process design and simulation: aspen plus and aspen hysys applications. Hoboken, New Jersey: American Institute of Chemical Engineers; 2019.10.1002/9781119311478Suche in Google Scholar
46. Predictive maintenance consulting [Internet] 2020 [cited 2025 July 07]. Available from: https://www.trmnet.com/consulting/aspen-mtell-predictive-maintenance/?utm_source=google&utm_medium=paidsearch&utm_content=691726473488&utm_term=predictive%20maintenance%20technologies&network=g&device=c&utm_campaign=AspenTech&gad_source=1&gad_campaignid=20937686044&gclid=EAIaIQobChMI4YL7qIStjgMVwY2DBx3rVhdlEAAYASAAEgKZE_D_BwE.Suche in Google Scholar
47. Build a plant’s digital twin with unifited lifecycle simulation [Internet] 2020 [cited 2025 July 07]. Available from: https://engage.aveva.com/unified-lifecycle-simulation.html.Suche in Google Scholar
48. Optimize machine reliability with augury’s AI [Internet] 2020 [cited 2025 July 07]. Available from: https://www.emerson.com/en-us/industries/automation/chemical.Suche in Google Scholar
49. Jiménez, L, Basualdo, MS, Gómez, JC, Toselli, L, Rosa, M. Nonlinear dynamic modeling of multicomponent batch distillation: a case study. Braz J Chem Eng 2002;19:307–17. https://doi.org/10.1590/s0104-66322002000300006.Suche in Google Scholar
50. Mane, S, Dhote, RR, Sinha, A, Thirumalaiswamy, R. Digital twin in the chemical industry: a review. Digit Twins Appl 2024;1:118–30. https://doi.org/10.1049/dgt2.12019.Suche in Google Scholar
51. Federico, M, Matteo, F, Flavio, M, Luisa, BG. Conceptual design of digital twin for bio-methanol production from microalgae. Chem Eng Trans 2022;92:253–8. https://doi.org/10.3303/CET2292043.Suche in Google Scholar
52. Reduce environmental impact and carbon footprint for cost competitive process plant design: integrating AVEVATM process simulation with mode FRONTIER®. Comput Aided Chem Eng [Internet] 2022:211–16. Elsevier [cited 2025 Jul 8] Available from: https://linkinghub.elsevier.com/retrieve/pii/B978032385159650035X.10.1016/B978-0-323-85159-6.50035-XSuche in Google Scholar
53. Siedlak, D, Pinon, O, Schlais, T. A digital thread approach to support manufacturing‐ influenced conceptual aircraft design. Res Eng Des 2017;29:285–308. https://doi.org/10.1007/s00163-017-0269-0.Suche in Google Scholar
54. Szczeblewski, S, Wachowiak, M, Gębicki, J. Optimizing large-scale inorganic processes: model-based digital design of RH-DS apparatus. Processes 2025;13:77. https://doi.org/10.3390/pr13010077.Suche in Google Scholar
55. Golubev, V, Chistyakov, D, Blednykh, I. AA27 -Digital Services for Alumina Refineries. In: TRAVAUX 52, Proceedings of the 41st International ICSOBA Conference, Dubai, 5–9 November 2023.Suche in Google Scholar
56. Udugama, IA, Öner, M, Lopez, PC, Beenfeldt, C, Bayer, C, Huusom, JK, et al.. Towards digitalization in bio-manufacturing operations: a survey on application of big data and digital twin concepts in Denmark. Front Chem Eng [Internet] 2021;3. [cited 2025 Jul 8]. https://doi.org/10.3389/fceng.2021.727152.Suche in Google Scholar
57. De Tommaso, J, Rossi, F, Moradi, N, Pirola, C, Patience, GS, Galli, F. Experimental methods in chemical engineering: process simulation. Can J Chem Eng 2020;98:2301–20. https://doi.org/10.1002/cjce.23857.Suche in Google Scholar
58. Qian, F, Tang, Y, Yu, X. The future of process industry: a cyber–physical–social system perspective. IEEE Trans Cybern 2024;54:3878–89. https://doi.org/10.1109/tcyb.2023.3298838.Suche in Google Scholar
59. Guo, Y, Klink, A, Bartolo, P, Guo, WG. Digital twins for electro-physical, chemical, and photonic processes. CIRP Ann 2023;72:593–619. https://doi.org/10.1016/j.cirp.2023.05.007.Suche in Google Scholar
60. Gbadago, DQ, Moon, J, Hwang, S. Exploring advanced process equipment visualization as a step towards digital twins development in the chemical industry: a CFD-DNN approach. Kor J Chem Eng 2023;40:37–45. https://doi.org/10.1007/s11814-022-1273-2.Suche in Google Scholar
61. Nara, EOB, Da Costa, MB, Baierle, IC, Schaefer, JL, Benitez, GB, Do Santos, LMAL, et al.. Expected impact of industry 4.0 technologies on sustainable development: a study in the context of Brazil’s plastic industry. Sustain Prod Consum 2021;25:102–22. https://doi.org/10.1016/j.spc.2020.07.018.Suche in Google Scholar
62. Lee, J, Cameron, I, Hassall, M. Improving process safety: what roles for digitalization and industry 4.0? Process Saf Environ Prot 2019;132:325–39. https://doi.org/10.1016/j.psep.2019.10.021.Suche in Google Scholar
63. Tao, F, Sun, X, Cheng, J, Zhu, Y, Liu, W, Wang, Y, et al.. MakeTwin: a reference architecture for digital twin software platform. Chin J Aeronaut 2024;37:1–18. https://doi.org/10.1016/j.cja.2023.05.002.Suche in Google Scholar
64. Aryai, V, Abbassi, R, Abdussamie, N, Salehi, F, Garaniya, V, Asadnia, M, et al.. Reliability of multi-purpose offshore-facilities: present status and future direction in Australia. Process Saf Environ Prot 2021;148:437–61. https://doi.org/10.1016/j.psep.2020.10.016.Suche in Google Scholar PubMed PubMed Central
65. Chen, X, Kurdve, M, Johansson, B, Despeisse, M. Enabling the twin transitions: digital technologies support environmental sustainability through lean principles. Sustain Prod Consum 2023;38:13–27. https://doi.org/10.1016/j.spc.2023.03.020.Suche in Google Scholar
66. Narayanan, H, Von Stosch, M, Feidl, F, Sokolov, M, Morbidelli, M, Butté, A. Hybrid modeling for biopharmaceutical processes: advantages, opportunities, and implementation. Front Chem Eng [Internet] 2023;5. [cited 2025 Jul 8]. https://doi.org/10.3389/fceng.2023.1157889.Suche in Google Scholar
67. Herzog, O, Jarke, M, Wu, SZ. Cooperating and competing digital twins for industrie 4.0 in urban planning contexts. Science 2023;5:44. https://doi.org/10.3390/sci5040044.Suche in Google Scholar
68. Tepljakov, A. Intelligent control and digital twins for industry 4.0. Sensors 2023;23:4036. https://doi.org/10.3390/s23084036.Suche in Google Scholar PubMed PubMed Central
69. Vaclavova, A, Strelec, P, Horak, T, Kebisek, M, Tanuska, P, Huraj, L. Proposal for an IIoT device solution according to industry 4.0 concept. Sensors 2022;22:325. https://doi.org/10.3390/s22010325.Suche in Google Scholar PubMed PubMed Central
70. Kherbache, M, Maimour, M, Rondeau, E. When digital twin meets network softwarization in the industrial IoT: real-time requirements case study. Sensors 2021;21:8194. https://doi.org/10.3390/s21248194.Suche in Google Scholar PubMed PubMed Central
71. Werbińska-Wojciechowska, S, Winiarska, K. Maintenance performance in the age of industry 4.0: a bibliometric performance analysis and a systematic literature review. Sensors 2023;23:1409. https://doi.org/10.3390/s23031409.Suche in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston