Startseite Thermo-kinetics, thermodynamics, and ANN modeling of the pyrolytic behaviours of Corn Cob, Husk, Leaf, and Stalk using thermogravimetric analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermo-kinetics, thermodynamics, and ANN modeling of the pyrolytic behaviours of Corn Cob, Husk, Leaf, and Stalk using thermogravimetric analysis

  • Mubarak A. Amoloye , Sulyman A. Abdulkareem und Adewale George Adeniyi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 7. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, we investigate the thermal stabilities, thermo-kinetic, and thermodynamic behaviours of Corn Cob (CC), Husk (CH), Leaf (CL), and Stalk (CS) during pyrolysis using the Thermogravimetric Analysis (TGA) at a single heating rate of 10 °C/min. Thermo-kinetics and thermodynamic parameters were evaluated for two temperature regions, region I (100–350 °C) and region II (350–500 °C) by employing the Coats–Redfern (CR) integral method to fit the TGA data to sixteen kinetic models. Results showed that diffusion models (D1, D1, D3, and D1) best suited the decomposition of CC, CH, CL, and CS in region I with Ea values of 109.90, 186.01, 129.4, and 78.7 kJ/mol respectively. Similarly, D1, third order model (F3), D3, and nucleation model (P4) with Ea values of 68.50 (CC), 177.10 (CH), 62.10 (CL), and 127.70 (CS) kJ/mol respectively best described residues’ decomposition in region II. Furthermore, kinetic parameters were used to compute the thermodynamic parameters; change in enthalpy (∆H), Gibbs free energy (∆G), and change in entropy (∆S) values for both regions. To study the pyrolytic behaviours of the residues, Artificial Neural Network (ANN) was employed to develop models to predict weight losses in samples by determining the coefficient of determination (R2) and minimum Mean Square Error (MSE). Results showed ANN as a very important tool for predicting the pyrolytic behaviours of corn residues and other biomass samples.


Corresponding author: Adewale George Adeniyi, Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: No potential conflict of interest was reported by the authors.

  4. Compliance to ethical standards: This article does not contain any studies involving human or animal subjects.

References

1. Pontianus, VJ, Oruonye, ED. The Nigerian population: a treasure for national development or an unsurmountable national challenge. Int J Sci Res Arch 2021;02:136–42. https://doi.org/10.30574/ijsra.2021.2.1.0026.Suche in Google Scholar

2. FAOStat-crops; 2020. http://www.fao.org/faostat/en/#data/.QC [Accessed 27 Jul 2022].Suche in Google Scholar

3. Amoloye, MA, AbdulKareem, SA, Adeniyi, AG. Production and characterization of biochar and HybridProduced from the Co-carbonization of corn husk and low-density polyethylene wastes. In: Bioenergy and biochemical processing technologies. Cham: Springer; 2022. pp. 13–25. https://doi.org/10.1007/978-3-030-96721-5_2.Suche in Google Scholar

4. Amoloye, MA, Abdulkareem, SA, Adeniyi, AG. Comparative study of biochars from the retort Co-carbonization of corn cob and polyethylene wastes. Malays J Catal 2023;7:6–12. https://doi.org/10.11113/mjcat.v7n1.168.Suche in Google Scholar

5. Fan, S, Sun, Y, Yang, T, Chen, Y, Yan, B, Li, R, et al.. Biochar derived from corn stalk and polyethylene co-pyrolysis : characterization and Pb (II) removal potential. RSC Adv 2020;10:6362–76. https://doi.org/10.1039/c9ra09487c.Suche in Google Scholar PubMed PubMed Central

6. Sanka, PM, Rwiza, MJ, Mtei, KM. Removal of selected heavy metal ions from industrial wastewater using rice and corn husk biochar. Water Air Soil Pollut 2020:231–44. https://doi.org/10.1007/s11270-020-04624-9.Suche in Google Scholar

7. Martínez-Casillas, DC, Mascorro-Gutiérrez, I, Betancourt-Mendiola, ML, Palestino, G, Quiroga-González, E, Pascoe-Sussoni, JE, et al.. Residue of corncob gasification as electrode of supercapacitors : an experimental and theoretical study. Waste Biomass Valor 2021;12:4123–40. https://doi.org/10.1007/s12649-020-01248-2.Suche in Google Scholar

8. Abd El-Sattar, H, Kamel, S, Tawfik, AM, Vera, D, Jurado, F. Modeling and simulation of corn stover gasifier and micro-turbine for power generation. Waste Biomass Valorization 2019;10:3101–14. https://doi.org/10.1007/s12649-018-0284-z.Suche in Google Scholar

9. Adeniyi, AG, Abdulkareem, SA, Ighalo, JO, Onifade, DV, Sanusi, KS. Thermochemical Co-conversion of sugarcane bagasse-LDPE hybrid waste into biochar. Arabian J Sci Eng 2020;46:6391–7. https://doi.org/10.1007/s13369-020-05119-9.Suche in Google Scholar

10. Adeniyi, AG, Ighalo, JO, Kingsley, IO, Amoloye, MA. A study on the thermochemical co – conversion of poultry litter and elephant grass to biochar. Clean Technol Environ Pol 2022;24:2193–202. https://doi.org/10.1007/s10098-022-02311-3.Suche in Google Scholar

11. Adeniyi, AG, Iwuozor, KO, Emenike, CE, Ogunniyi, S, Amoloye, MA, Sagboye, PA. One – step chemical activation for the production of engineered orange peel biochar. Emergent Mater 2022;6:211–21. https://doi.org/10.1007/s42247-022-00442-3.Suche in Google Scholar

12. Emiola-sadiq, T, Zhang, L, Dalai, AK. Thermal and kinetic studies on biomass degradation via thermogravimetric analysis: a combination of model-fitting and model-free approach. ACS Omega 2021;6:22233–47. https://doi.org/10.1021/acsomega.1c02937.Suche in Google Scholar PubMed PubMed Central

13. Olatunji, OO, Akinlabi, S, Madushele, N, Adedeji, PA, Ndolomingo, MJ. Geospatial investigation of physicochemical properties and thermodynamic parameters of biomass residue for energy generation. Biomass Convers Biorefin 2021;11:2813–27. https://doi.org/10.1007/s13399-020-00723-z.Suche in Google Scholar

14. Ashraf, A, Sattar, H, Munir, S. Thermal decomposition study and pyrolysis kinetics of coal and agricultural residues under non-isothermal conditions. Fuel 2019;235:504–14. https://doi.org/10.1016/j.fuel.2018.07.120.Suche in Google Scholar

15. Bhagavatula, A, Huffman, G, Shah, N, Honaker, R. Evaluation of thermal evolution profiles and estimation of kinetic parameters for pyrolysis of coal/corn stover blends using thermogravimetric analysis. J Fuel 2014:1–12. https://doi.org/10.1155/2014/914856.Suche in Google Scholar

16. Gupta, GK, Mondal, MK. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. J Therm Anal Calorim 2019;137:1431–41. https://doi.org/10.1007/s10973-019-08053-7.Suche in Google Scholar

17. Lang, Q, Zhang, B, Liu, Z, Chen, Z, Xia, Y, Li, D, et al.. Co-hydrothermal carbonization of corn stalk and swine manure: combustion behavior of hydrochar by thermogravimetric analysis. Bioresour Technol 2019;271:75–83. https://doi.org/10.1016/j.biortech.2018.09.100.Suche in Google Scholar PubMed

18. Boubacar Laougé, Z, Merdun, H. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresour Technol 2020;299:122602. https://doi.org/10.1016/j.biortech.2019.122602.Suche in Google Scholar PubMed

19. Mukherjee, A, Okolie, JA, Tyagi, R, Dalai, AK, Niu, C. Pyrolysis kinetics and activation thermodynamic parameters of exhausted coffee residue and coffee husk using thermogravimetric analysis. Can J Chem Eng 2021;99:1683–95. https://doi.org/10.1002/cjce.24037.Suche in Google Scholar

20. Liew, JX, Loy, ACM, Chin, BLF, AlNouss, A, Shahbaz, M, Al-Ansari, T, et al.. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renew Energy 2021;170:948–63. https://doi.org/10.1016/j.renene.2021.02.053.Suche in Google Scholar

21. Reinehr, OT, Ohara, AM, Santos, PDOM, Barros, LJM, Bittencourt, PRS, Baraldi, JI, et al.. Study of pyrolysis kinetic of green corn husk. J Therm Anal Calorim 2020;143:3181–92. https://doi.org/10.1007/s10973-020-10345-2.Suche in Google Scholar

22. Naqvi, RS, Hameed, Z, Tariq, R, Taqvi, SA, Ali, I, Niazi, MBK, et al.. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag 2019;85:131–40. https://doi.org/10.1016/j.wasman.2018.12.031.Suche in Google Scholar PubMed

23. Bhuyan, N, Narzari, R, Baruah, MSB, Kataki, R. Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Convers Biorefin 2020;12:2203–18.10.1007/s13399-020-00806-xSuche in Google Scholar

24. Bi, H, Wang, C, Lin, Q, Jiang, X, Jiang, C, Bao, L. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR. Sci Total Environ 2020;751:142293. https://doi.org/10.1016/j.scitotenv.2020.142293.Suche in Google Scholar PubMed

25. Chen, X, Zhang, H, Song, Y, Xiao, R. Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chem Eng Process: Process Intensif 2018;130:36–42. https://doi.org/10.1016/j.cep.2018.05.018.Suche in Google Scholar

26. Hai, A, Bharath, G, Daud, M, Rambabu, K, Ali, I, Hasan, SW, et al.. Valorization of groundnut shell via pyrolysis : product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling. Chemosphere 2021;283:131162. https://doi.org/10.1016/j.chemosphere.2021.131162.Suche in Google Scholar PubMed

27. Liyanaarachchi, CV, Nishshanka, KGHS, Sakarika, M, Nimarshana, PHV, Ariyadasa, TU, Kornaros, M. Artificial neural network (ANN) approach to optimize cultivation conditions of microalga Chlorella vulgaris in view of biodiesel production. Biochem Eng J 2021;173:108072. https://doi.org/10.1016/j.bej.2021.108072.Suche in Google Scholar

28. Du, J, Gao, L, Yang, Y, Chen, G, Guo, S, Omran, M, et al.. Study on thermochemical characteristics properties and pyrolysis kinetics of the mixtures of waste corn stalk and pyrolusite. Bioresour Technol 2021;324:124660. https://doi.org/10.1016/j.biortech.2020.124660.Suche in Google Scholar PubMed

29. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature 1964;201:68–9. https://doi.org/10.1038/201068a0.Suche in Google Scholar

30. Santos, VO, Queiroz, LS, Araujo, RO, Ribeiro, FCP, Guimarães, MN, Da Costa, CEF, et al.. Pyrolysis of acai seed biomass: kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol Rep 2020;12:100553. https://doi.org/10.1016/j.biteb.2020.100553.Suche in Google Scholar

31. Rony, HA, Kong, L, Lu, W, Dejam, M, Adidharma, H, Gasem, AMK, et al.. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresour Technol 2019;284:466–73. https://doi.org/10.1016/j.biortech.2019.03.049.Suche in Google Scholar PubMed

32. Grycova, B, Pryszcz, A, Krzack, S, Klinger, M, Lestinsky, P. Torrefaction of biomass pellets using the thermogravimetric analyser. Biomass Convers Biorefin 2021;11:2837–42.10.1007/s13399-020-00621-4Suche in Google Scholar

33. Ivanovski, M, Petrovic, A, Ban, I, Goricanec, D, Urbancl, D. Determination of the kinetics and thermodynamic parameters of lignocellulosic biomass subjected to the torrefaction process. Materials 2021;14:7877. https://doi.org/10.3390/ma14247877.Suche in Google Scholar PubMed PubMed Central

34. Balsora, HK, Kartik, S, Rainey, TJ, Abbas, A, Joshi, JB, Sharma, A, . Kinetic modelling for thermal decomposition of agricultural residues at different heating rates. Biomass Convers Biorefin 2023;13:3281–95. https://doi.org/10.1007/s13399-021-01382-4.Suche in Google Scholar

35. Ma, F, Zeng, Y, Wang, J, Yang, Y, Yang, X, Zhang, X. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model. Bioresour Technol 2013;128:417–22. https://doi.org/10.1016/j.biortech.2012.10.144.Suche in Google Scholar PubMed

36. Mankeed, P, Onsree, T, Naqvi, RS, Shimpalee, S, Tippayawong, N. Kinetic and thermodynamic analyses for pyrolysis of hemp hurds using discrete distributed activation energy model. Case Stud Therm Eng 2022;31:101870. https://doi.org/10.1016/j.csite.2022.101870.Suche in Google Scholar

37. Wang, XD, Xue, JJ, Zhu, YJ, Liu, CR, Hu, XY, Liang, H, et al.. The study of combustion characteristics of corn stalks and cobs via TGA-DTG-DSC analysis. Macao: IOP Publishing Ltd; 2019.10.1088/1755-1315/354/1/012130Suche in Google Scholar

38. Singh, S, Patil, T, Tekade, SP, Gawande, MB, Sawarkar, AN. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Sci Total Environ 2021;783:147004. https://doi.org/10.1016/j.scitotenv.2021.147004.Suche in Google Scholar PubMed

39. Singh, HK, Patil, T, Vineeth, SK, Das, S, Pramanik, A, Mhaske, ST. Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents : corn cover and corn cob. Mater Today Proc 2019;27:589–94. https://doi.org/10.1016/j.matpr.2019.12.065.Suche in Google Scholar

40. Zhang, J, Zhang, X. The thermochemical conversion of biomass into biofuels. In: Biomass, biopolymer-based materials, and bioenergy; 2019:327–68 pp.10.1016/B978-0-08-102426-3.00015-1Suche in Google Scholar

41. Mensah, MB, Jumpah, H, Boadi, NO, Awudza, JAM. Assessment of quantities and composition of corn stover in Ghana and their conversion into bioethanol. Scientific Afr 2021;12:e00731. https://doi.org/10.1016/j.sciaf.2021.e00731.Suche in Google Scholar

42. Gupta, S, Gupta, GK, Mondal, MK. Thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of pistachio shell pyrolysis for its bioenergy potential. Biomass Convers Biorefin 2020;12:4847–61. https://doi.org/10.1007/s13399-020-01104-2.Suche in Google Scholar

43. Kumar, P, Subbarao, PMV, Vijay, VK. Assessment of pyrolysis-kinetics of corncob and eucalyptus biomass residue using thermo gravimetric analysis. Int J Sustain Energy 2021:1–13. https://doi.org/10.1080/14786451.2021.1887186.Suche in Google Scholar

44. Cai, J, Xu, D, Dong, Z, Yu, X, Yang, Y, Banks, SW, et al.. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sustain Energy Rev 2018;82:2705–15. https://doi.org/10.1016/j.rser.2017.09.113.Suche in Google Scholar

45. Patnaik, S, Kumar, S, Panda, AK. Thermal degradation of eco-friendly alternative plastics: kinetics and thermodynamics analysis. Environ Sci Pollut Control Ser 2020;27:14991–5000. https://doi.org/10.1007/s11356-020-07919-w.Suche in Google Scholar PubMed

46. Yan, J, Yang, Q, Zhang, L, Lei, Z, Li, Z, Wang, Z, et al.. Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resour Convers 2020;3:173–81. https://doi.org/10.1016/j.crcon.2020.11.002.Suche in Google Scholar

47. Varma, AK, Singh, S, Rathore, AK, Thakur, LS, Shankar, R, Mondal, P. Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Convers Biorefin 2020.10.1007/s13399-020-00972-ySuche in Google Scholar

48. Gajera, B, Tyagi, U, Sarma, AK, Jha, KM. Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: kinetic and thermodynamic study. Fuel Commun 2022;12:100073. https://doi.org/10.1016/j.jfueco.2022.100073.Suche in Google Scholar

49. Bamboriya, OP, Varma, AK, Shankar, R, Aniya, V, Mondal, P, Thakur, LS. Thermal analysis and determination of kinetics and thermodynamics for pyrolysis of soybean de – oiled cake using thermogravimetric analysis. J Therm Anal Calorim 2022. https://doi.org/10.1007/s10973-022-11610-2.Suche in Google Scholar

50. Bahadar, A, Kanthasamy, R, Sait, HH, Zwawi, M, Algarni, M, Ayodele, BV, et al.. Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal co-gasification techniques: a multi-criteria modeling approach. Chemosphere 2022;287:132052. https://doi.org/10.1016/j.chemosphere.2021.132052.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/cppm-2023-0021).


Received: 2023-02-26
Accepted: 2023-06-02
Published Online: 2023-07-07

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2023-0021/pdf
Button zum nach oben scrollen