Startseite An enhanced feedback-feedforward control scheme for process industries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An enhanced feedback-feedforward control scheme for process industries

  • Manish Yadav ORCID logo EMAIL logo und Hirenkumar G. Patel
Veröffentlicht/Copyright: 3. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, a unified control scheme is proposed for dead-time compensation and disturbance rejection via feedback and feedforward controller. The objectives of this work are suggested in two folds, first tuning of fractional order feedback controller via delayed Bode’s ideal transfer function instead of conventional Bode’s ideal transfer function with the benefits of dead time compensator and second feedforward controller for disturbance rejection. An existing method is utilized for comparison with the proposed scheme. To examine the efficacy of the proposed method robustness test is also carried out via sensitivity analysis. For quantifiable evaluation of the proposed scheme Integral Absolute Error (IAE) and Integral Square Error (ISE) are utilized. For the usefulness of the proposed scheme, two practical problems are demonstrated in this paper. The limpidity and instinctive appeal of the proposed scheme make it beautiful for industrial applications.


Corresponding author: Manish Yadav, Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Seborg, D, Thomas, FE, Ducan, AM. Process dynamics and control. John Wiley & Sons; 2004.Suche in Google Scholar

2. Marlin, TE. Designing processes and control systems for dynamic performance. McGraw-Hill; 1995.Suche in Google Scholar

3. Astrom, KJ, Murray, RM. Feedback system: an introduction for scientist and engineers. Princeton University Press; 2008.Suche in Google Scholar

4. Podlubny, I. Fractional-order systems and PIλDμ controller. IEEE Trans Automat Contr 1999;44:208–14. https://doi.org/10.1109/9.739144.Suche in Google Scholar

5. Bettayeb, M, Mansouri, M. IMC-PID-fractional-filter controllers for integer order system. ISA (Instrum Soc Am) Trans 2014;53:1624–8. https://doi.org/10.1016/j.isatra.2013.11.014.Suche in Google Scholar PubMed

6. Beschi, M, Padula, F, Visoli, A. Fractional robust PID controller for solar furnace. Contr Eng Pract 2016;56:190–9. https://doi.org/10.1016/j.conengprac.2016.04.005.Suche in Google Scholar

7. Chen, SY, Huang, HX. Design of fractional proportional integral controller using stability and robustness control in time delay system. Meas Contr 2019;52:1552–66. https://doi.org/10.1177/0020294019877513.Suche in Google Scholar

8. Muresan, IC, Bris, RI, Dulf, HE. Event-based implementation of fractional order IMC controllers for simple FOPDT processes. Mathematics 2020;8:1378. https://doi.org/10.3390/math8081378.Suche in Google Scholar

9. Saidi, B, Amairi, M, Najar, S, Aoun, M. Fractional PID min-max. optimization-based design using dominant pole placement. Int J Syst Control Commun 2015;9:277–305.10.1504/IJSCC.2018.095263Suche in Google Scholar

10. Pradhan, R, Manjhi, SK, Pradhan, JK, Pati, BB. Antlion optimizer tuned PID controller based on Bode’s ideal transfer function for automobile cruise control system. J Ind Inf Integr 2018;9:45–57. https://doi.org/10.1016/j.jii.2018.01.002.Suche in Google Scholar

11. Vanavil, B, Uma, S, Rao, AS. Smith predictor based parallel cascade control strategy for unstable processes with application to a continuous bioreactor. Chem Prod Process Model 2012;7:1–22. https://doi.org/10.1515/1934-2659.1653.Suche in Google Scholar

12. Vu, TNL, Lee, M. Smith predictor based fractional-order PI control for time-delay processes. Kor J Chem Eng 2014;7:1–22. https://doi.org/10.1007/s11814-014-0076-5.Suche in Google Scholar

13. Bettayeb, M, Mansouri, R, Al-Saggaf, U, Mehndi, IM. Smith predictor based fractional-order-filter PID controller design for long time delay. Asian J Contr 2017;19:1620–8. https://doi.org/10.1002/asjc.1385.Suche in Google Scholar

14. Safaei, M, Tavakoli, S. Smith predictor based fractional-order control for time delay integer order system. Int J Dyn Control 2018;6:179–87. https://doi.org/10.1007/s40435-017-0312-z.Suche in Google Scholar

15. Nagarsheth, S, Sharma, SN. The combined effect of fractional filter and smith predictor for the enhanced closed-loop performance of integer order time-delay system. Arch Contr Sci 2020;30:47–76.Suche in Google Scholar

16. Yumuk, E, Guzelkaya, M, Eskin, I. Analytical fractional PID controller design based on Bode’s ideal transfer function plus time delay. ISA (Instrum Soc Am) Trans 2019;91:196–206. https://doi.org/10.1016/j.isatra.2019.01.034.Suche in Google Scholar PubMed

17. Nagarsheth, S, Sharma, SN. Smith predictor embedded analytical fractional-order controller design: a delayed Bode’s ideal transfer function approach. IFAC-PapersOnLine 2020;53:3749–54. https://doi.org/10.1016/j.ifacol.2020.12.2062.Suche in Google Scholar

18. Shamsuzzoha, M. Internal model-based robust PID controller tuning for disturbance rejection. J Cent South Univ 2016;23:581–9. https://doi.org/10.1007/s11771-016-3105-1.Suche in Google Scholar

19. Coulson, J, Richardson, JF. Chemical engineering: process control, 4th ed. Joe Hayton; 2017, vol. 3B.Suche in Google Scholar

20. Nisenfeld, AE, Mitasaki, RK. Application of feedforward control to the distillation column. Automatica 1973;9:319–27. https://doi.org/10.1016/0005-1098(73)90056-3.Suche in Google Scholar

21. Dizaji, NK, Sakhvati, A, Hosseini, SH. Design of a PID feedforward for controlling output fluid temperature in shell and tube hear exchanger. J Electr Electron Eng 2015;3:30–4. https://doi.org/10.11648/j.jeee.s.2015030201.17.Suche in Google Scholar

22. Vilanova, R, Arrieta, A, Ponsa, P. IMC based feedforward framework for disturbances attenuation on uncertain systems. ISA (Instrum Soc Am) Trans 2009;31:1321–9. https://doi.org/10.1016/j.isatra.2009.05.007.Suche in Google Scholar PubMed

23. Hast, M, Hagglund, T. Lower-order feedforward controller – optimal performances and practical considerations. J Process Contr 2014;24:1462–71. https://doi.org/10.1016/j.jprocont.2014.06.016.Suche in Google Scholar

24. Rodriguez, C, Normy-Ric, JE, Guzman, LJ, Berengul, M. On the filtered smith predictor with feedforward controller. J Process Contr 2016;41:35–46. https://doi.org/10.1016/j.jprocont.2016.02.005.Suche in Google Scholar

25. Jeng, JC, Ge, GP. Data based approach for feedback-feedforward controller design using closed-loop plant data. ISA (Instrum Soc Am) Trans 2018;80:244–56. https://doi.org/10.1016/j.isatra.2018.07.013.Suche in Google Scholar PubMed

26. Rodriguez, C, Escolastico, AE, Guzman, LJ, Beresuge, M, Haggulund, T. Revisiting the simplified internal model control using for low order controllers: feedforward controller. IET Control Theory & Appl 2020;14:1612–8. https://doi.org/10.1049/iet-cta.2019.0823.Suche in Google Scholar

27. Bode, HW. Network analysis and feedback amplifier design. Van Nostrand; 1945.Suche in Google Scholar

28. Smith, OJ. Closer control of loops with dead time. Chem Eng Prog 1957;53:217–9.Suche in Google Scholar

29. Muresan, IC, Ionsecu, MC. Generalization of the FOPDT model for identification and control purposes. Process 2020;8:682. https://doi.org/10.3390/pr8060682.Suche in Google Scholar

30. Stephanopolus, G. Chemical process control. Prentice-Hall; 2015.Suche in Google Scholar

31. Oustaloup, A, Levron, F, Mathieu, B, Nanot, FM. Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circ Syst Fund Theor Appl 2000;47:25–39. https://doi.org/10.1109/81.817385.Suche in Google Scholar

32. Goodwin, GC, Graebe, SF, Salgado, ME. Control systems design. Prentice-Hall; 2001.Suche in Google Scholar

33. Monje, CA, Chen, YQ, Vinagre, BM, Xue, D, Feliu, V. Fractional-order system and controls: fundamentals and applications. Springer; 2010.10.1007/978-1-84996-335-0Suche in Google Scholar

Received: 2021-02-23
Accepted: 2021-08-20
Published Online: 2021-09-03

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2021-0016/pdf
Button zum nach oben scrollen