Startseite CFD simulation of the ethylbenzene dehydrogenation reaction in the fixed bed reactor with a cylindrical catalyst of various sizes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

CFD simulation of the ethylbenzene dehydrogenation reaction in the fixed bed reactor with a cylindrical catalyst of various sizes

  • Sergei A. Solovev ORCID logo EMAIL logo , Olga V. Soloveva , Daniel L. Paluku und Alexander A. Lamberov
Veröffentlicht/Copyright: 1. Juli 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the Discrete Element Method of simulation was used to study the catalytic granule size effect on the efficiency of a bed reactor for the ethylbenzene dehydrogenation reaction. The model constructed for the laboratory experiment was made of catalyst granules of lengths 3, 6 and 9 mm, and diameters 2.8, 3, and 3.2 mm. A detailed evaluation of the catalyst total surface area and porosity effect was conducted owing to the analysis of particles size effect on the packing. Different results were observed for a wide feed gas mixture rate. Calculations performed allowed to deduce dependences of the reaction product concentration, the pressure drops, and the reactor productivity for all the particle sizes investigated.


Corresponding author: Sergei A. Solovev, Institute of Digital Technologies and Economics, Kazan State Power Engineering University, Kazan, Russian Federation, E-mail:

Funding source: Russian Foundation for Basic Research 10.13039/501100002261

Award Identifier / Grant number: 18-41-160005

  1. Author contributions: All the authors have accepted responsibility for theentire content of this submitted manuscript and approved submission.

  2. Research funding: The reported research was funded by Russian Foundation for Basic Research and the government of the Republic of Tatarstan of the Russian Federation, Grant No. 18-41-160005.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Calis, HPA, Nijenhuis, J, Paikert, BC, Dautzenberg, FM, van den Bleek, CM. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemeng Sci 2001;56:1713–20. https://doi.org/10.1016/s0009-2509(00)00400-0.Suche in Google Scholar

2. Freund, H, Zeiser, T, Huber, F, Klemm, E, Brenner, G, Durst, F, et al.. Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chemeng Sci 2003;58:903–10. https://doi.org/10.1016/s0009-2509(02)00622-x.Suche in Google Scholar

3. Giese, M, Rottschäfer, K, Vortmeyer, D. Measured and modeled superficial flow profiles in packed beds with liquid flow. AIChE J 1998;44:484–90. https://doi.org/10.1002/aic.690440225.Suche in Google Scholar

4. Eppinger, T, Seidler, K, Kraume, M. DEM–CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chemeng J 2011;166:324–1. https://doi.org/10.1016/j.cej.2010.10.053.Suche in Google Scholar

5. Bey, O, Eigenberger, G. Fluid flow through catalyst filled tubes. Chemeng Sci 1997;52:1365–76. https://doi.org/10.1016/s0009-2509(96)00509-x.Suche in Google Scholar

6. Winterberg, M, Tsotsas, E, Krischke, A, Vortmeyer, D. A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres. Chemeng Sci 2000;55:967–79. https://doi.org/10.1016/s0009-2509(99)00379-6.Suche in Google Scholar

7. Cundall, PA. The measurement and analysis of accelerations in rock slopes [Ph.D. thesis]. Imperial College; 1971.Suche in Google Scholar

8. Cundall, PA, Strack, OD. A discrete numerical model for granular assemblies. Geotechnique 1979;29:47–65. https://doi.org/10.1680/geot.1979.29.1.47.Suche in Google Scholar

9. Theuerkauf, J, Witt, P, Schwesig, D. Analysis of particle porosity distribution in fixed beds using the discrete element method. Powder Technol 2006;165:92–9. https://doi.org/10.1016/j.powtec.2006.03.022.Suche in Google Scholar

10. Yang, X, Gui, N, Tu, J, Jiang, S. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor. Nucleng Des 2014;270:404–11. https://doi.org/10.1016/j.nucengdes.2014.02.010.Suche in Google Scholar

11. Chen, L, Wang, C, Moscardini, M, Kamlah, M, Liu, S. A DEM-based heat transfer model for the evaluation of effective thermal conductivity of packed beds filled with stagnant fluid: thermal contact theory and numerical simulation. Int J Heat Mass Tran 2019;132:331–46. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.005.Suche in Google Scholar

12. Gan, JQ, Yu, AB, Zhou, ZY. DEM simulation on the packing of fine ellipsoids. Chemeng Sci 2016;156:64–76. https://doi.org/10.1016/j.ces.2016.09.017.Suche in Google Scholar

13. Kumar, P, Topin, F. Investigation of fluid flow properties in open cell foams: Darcy and weak inertia regimes. Chemeng Sci 2014;116:793–805. https://doi.org/10.1016/j.ces.2014.06.009.Suche in Google Scholar

14. Taskin, ME, Troupel, A, Dixon, AG, Nijemeisland, M, Stitt, EH. Flow, transport, and reaction interactions for cylindrical particles with stronglyendothermic reactions. Indeng Chem Res 2010;49:9026–37. https://doi.org/10.1021/ie1003619.Suche in Google Scholar

15. Pohar, A, Belavic, D, Dolanc, G, Hocevar, S. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor. J Power Sources 2014;256:80–7. https://doi.org/10.1016/j.jpowsour.2014.01.051.Suche in Google Scholar

16. Atmakidis, T, Kenig, EY. Numerical analysis of mass transfer in packed-bed reactors with irregular particle arrangements. Chemeng Sci 2012;81:77–83. https://doi.org/10.1016/j.ces.2012.06.048.Suche in Google Scholar

17. Atmakidis, T, Kenig, EY. Numerical analysis of residence time distribution in packed bed reactors with irregular particle arrangements. Chem Prod Process Model 2015;10:17–26. https://doi.org/10.1515/cppm-2014-0021.Suche in Google Scholar

18. Yang, Y, Xiang, Y, Li, Y, Chu, G, Zou, H, Arowo, M, et al.. 3D CFD modelling and optimization of single‐phase flow in rotating packed beds. Can J Chemeng 2015;93:1138–48. https://doi.org/10.1002/cjce.22183.Suche in Google Scholar

19. Shi, X, Xiang, Y, Wen, LX, Chen, JF. CFD analysis of liquid phase flow in a rotating packed bed reactor. Chemeng J 2013;228:1040–9. https://doi.org/10.1016/j.cej.2013.05.081.Suche in Google Scholar

20. Guo, K, Guo, F, Feng, Y, Chen, J, Zheng, C, Gardner, NC. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor. Chemeng Sci 2000;55:1699–706. https://doi.org/10.1016/s0009-2509(99)00369-3.Suche in Google Scholar

21. Dixon, AG, Nijemeisland, M, Stitt, EH. Systematic mesh development for 3D CFD simulation of fixed beds: contact points study. Comput Chemeng 2013;48:135–53. https://doi.org/10.1016/j.compchemeng.2012.08.011.Suche in Google Scholar

22. Nijemeisland, M, Dixon, AG. Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed. Chemeng J 2001;82:231–46. https://doi.org/10.1016/s1385-8947(00)00360-0.Suche in Google Scholar

23. Guardo, A, Coussirat, M, Larrayoz, MA, Recasens, F, Egusquiza, E. CFD flow and heat transfer in nonregular packings for fixed bed equipment design. Indeng Chem Res 2004;43:7049–56. https://doi.org/10.1021/ie034229+.10.1021/ie034229+Suche in Google Scholar

24. Guardo, A, Coussirat, M, Recasens, F, Larrayoz, MA, Escaler, X. CFD study on particle-to-fluid heat transfer in fixed bed reactors: convective heat transfer at low and high pressure. Chemeng Sci 2006;61:4341–53. https://doi.org/10.1016/j.ces.2006.02.011.Suche in Google Scholar

25. Ookawara, S, Kuroki, M, Street, D, Ogawa, K. High-fidelity DEM-CFD modeling of packed bed reactors for process intensification. In: Proceedings of European Congress Of Chemicalengineering (ECCE-6). Copenhagen; 2007. 16–20 pp.Suche in Google Scholar

26. Kuroki, M, Ookawara, S, Street, D, Ogawa, K. High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors. In: Proceedings of European Congress of Chemicalengineering (ECCE-6). Copenhagen; 2007. 16–21 pp.Suche in Google Scholar

27. Dixon, AG, Nijemeisland, M, Stitt, EH. Packed tubular reactor modeling and catalyst design using computational fluid dynamics. Adv Chemeng 2006;31:307–89. https://doi.org/10.1016/s0065-2377(06)31005-8.Suche in Google Scholar

28. Wehinger, GD. Particle-resolved CFD simulations of catalytic flow reactors. Berlin: Technische Universitaet Berlin; 2016.Suche in Google Scholar

29. Partopour, B, Dixon, AG. Computationally efficient incorporation of microkinetics into resolved-particle CFD simulations of fixed-bed reactors. Comput Chemeng 2016;88:126–34. https://doi.org/10.1016/j.compchemeng.2016.02.015.Suche in Google Scholar

30. Fischedick, T, Kind, M, Dietrich, B. Radial two-phase thermal conductivity of ceramic sponges up to high temperatures–experimental results and correlation. Int J Therm Sci 2017;114:98–113. https://doi.org/10.1016/j.ijthermalsci.2016.11.020.Suche in Google Scholar

31. Sinn, C, Pesch, GR, Thöming, J, Kiewidt, L. Coupled conjugate heat transfer and heat production in open-cell ceramic foams investigated using CFD. Int J Heat Mass Tran 2019;139:600–12. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.042.Suche in Google Scholar

32. Kiewidt, L, Thöming, J. Multiscale modeling of monolithic sponges as catalyst carrier for the methanation of carbon dioxide. Chemeng Sci X 2019;2:100016. https://doi.org/10.1016/j.cesx.2019.100016.Suche in Google Scholar

33. Dong, Y, Korup, O, Gerdts, J, Cuenya, BR, Horn, R. Microtomography-based CFD modeling of a fixed-bed reactor with an open-cell foam monolith and experimental verification by reactor profile measurements. Chemeng J 2018;353:176–88. https://doi.org/10.1016/j.cej.2018.07.075.Suche in Google Scholar

34. Hettel, M, Daymo, E, Deutschmann, O. 3D modeling of a CPOX-reformer including detailed chemistry and radiation effects with DUO. Comput Chemeng 2018;109:166–78. https://doi.org/10.1016/j.compchemeng.2017.11.005.Suche in Google Scholar

35. Sinn, C, Kranz, F, Wentrup, J, Thöming, J, Wehinger, GD, Pesch, GR. CFD Simulations of radiative heat transport in open-cell foam catalytic reactors. Catalysts 2020;10:716. https://doi.org/10.3390/catal10060716.Suche in Google Scholar

36. Paek, JW, Kang, BH, Kim, SY, Hyun, JM. Effective thermal conductivity and permeability of aluminum foam materials. Int J Thermophys 2000;21:453–64. https://doi.org/10.1023/a:1006643815323.10.1023/A:1006643815323Suche in Google Scholar

37. Partopour, B, Dixon, AG. Integrated multiscale modeling of fixed bed reactors: studying the reactor under dynamic reaction conditions. Chemeng J 2019;377:119738. https://doi.org/10.1016/j.cej.2018.08.124.Suche in Google Scholar

38. Yang, X, Wang, S, Zhang, K, He, Y. Evaluation of coke deposition in catalyst particles using particle-resolved CFD model. Chemeng Sci 2021;229:116122. https://doi.org/10.1016/j.ces.2020.116122.Suche in Google Scholar

39. Zhu, L-T, Liu, Y-X, Luo, Z-H. Anenhanced correlation for gas-particle heat and mass transfer in packed and fluidized bed reactors. Chemeng J 2019;374:531–44. https://doi.org/10.1016/j.cej.2019.05.194.Suche in Google Scholar

40. Stitt, H, Marigo, M, Wilkinson, S, Dixon, T. How good is your model? Johnson Matthey Technol Rev 2015;59:74–89. https://doi.org/10.1595/205651315x686804.Suche in Google Scholar

41. Dong, Y, Sosna, B, Korup, O, Rosowski, F, Horn, R. Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chemeng J 2017;317:204–14. https://doi.org/10.1016/j.cej.2017.02.063.Suche in Google Scholar

42. Dixon, AG, Walls, G, Stanness, H, Nijemeisland, M, Stitt, EH. Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube. Chemeng J 2012;200:344–56. https://doi.org/10.1016/j.cej.2012.06.065.Suche in Google Scholar

43. Nijemeisland, M, Dixon, AG, Stitt, EH. Catalyst design by CFD for heat transfer and reaction in steam reforming. Chemeng Sci 2004;59:5185–91. https://doi.org/10.1016/j.ces.2004.07.088.Suche in Google Scholar

44. Tsory, T, Ben-Jacob, N, Brosh, T, Levy, A. Thermal DEM–CFD modeling and simulation of heat transfer through packed bed. Powder Technol 2013;244:52–60. https://doi.org/10.1016/j.powtec.2013.04.013.Suche in Google Scholar

45. Das, S, Deen, NG, Kuipers, JAM. Multiscale modeling of fixed-bed reactors with porous (open-cell foam) non-spherical particles: hydrodynamics. Chemeng J 2018;334:741–59. https://doi.org/10.1016/j.cej.2017.10.047.Suche in Google Scholar

46. Bu, SS, Yang, J, Zhou, M, Li, SY, Wang, QW, Guo, ZX. On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres. Nucleng Des 2014;270:21–33. https://doi.org/10.1016/j.nucengdes.2014.01.001.Suche in Google Scholar

47. Zhang, W, Thompson, KE, Reed, AH, Beenken, L. Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles. Chemeng Sci 2006;61:8060–74. https://doi.org/10.1016/j.ces.2006.09.036.Suche in Google Scholar

48. Tao, H, Jin, B, Zhong, W, Wang, X, Ren, B, Zhang, Y, et al.. Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chemeng Process: Proc Intens 2010;49:151–8. https://doi.org/10.1016/j.cep.2010.01.006.Suche in Google Scholar

49. Hosseininia, ES. Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul Matter 2012;14:483–503. https://doi.org/10.1007/s10035-012-0340-5.Suche in Google Scholar

50. Oda, M, Kazama, H, Konishi, J. Effects of induced anisotropy on the development of shear bands in granular materials. Mech Mater 1998;28:103–11. https://doi.org/10.1016/s0167-6636(97)00018-5.Suche in Google Scholar

51. Golshan, S, Sotudeh-Gharebagh, R, Zarghami, R, Mostoufi, N, Blais, B, Kuipers, JAM. Review and implementation of CFD-DEM applied to chemical process systems. Chemeng Sci 2020;221:115646. https://doi.org/10.1016/j.ces.2020.115646.Suche in Google Scholar

52. Dixon, AG, Nijemeisland, M. CFD as a design tool for fixed-bed reactors. Indeng Chem Res 2001;40:5246–4. https://doi.org/10.1021/ie001035a.Suche in Google Scholar

53. Romkes, SJP, Dautzenberg, FM, van den Bleek, CM, Calis, HPA. CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio. Chemeng J 2003;96:3–13. https://doi.org/10.1016/j.cej.2003.08.026.Suche in Google Scholar

54. Dixon, AG. Local transport and reaction rates in a fixed bed reactor tube:endothermic steam methane reforming. Chemeng Sci 2017;168:156–77. https://doi.org/10.1016/j.ces.2017.04.039.Suche in Google Scholar

55. Benyahia, F, O’Neill, KE. Enhanced voidage correlations for packed beds of various particle shapes and sizes. Part Sci Technol 2005;23:169–77. https://doi.org/10.1080/02726350590922242.Suche in Google Scholar

56. de Klerk, A. Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 2003;49:2022–9. https://doi.org/10.1002/aic.690490812.Suche in Google Scholar

57. Mueller, GE. Numerically packing spheres in cylinders. Powder Technol 2005;159:105–10. https://doi.org/10.1016/j.powtec.2005.06.002.Suche in Google Scholar

58. Zhang, M, Dong, H, Geng, Z. Computational study of flow and heat transfer infixed beds with cylindrical particles for low tube to particle diameter ratios. Chemeng Res Des 2018;132:149–61. https://doi.org/10.1016/j.cherd.2018.01.006.Suche in Google Scholar

59. Ergun, S. Fluid flow through packed columns. Chemeng Prog 1952;48:89–94.Suche in Google Scholar

60. Eisfeld, B, Schnitzlein, K. The influence of confining walls on the pressure drop in packed beds. Chemeng Sci 2001;56:4321–9. https://doi.org/10.1016/s0009-2509(00)00533-9.Suche in Google Scholar

61. Nemec, D, Levec, J. Flow through packed bed reactors: 1. Single-phase flow. Chemeng Sci 2005;60:6947–57. https://doi.org/10.1016/j.ces.2005.05.068.Suche in Google Scholar

Received: 2021-01-14
Accepted: 2021-06-20
Published Online: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2021-0002/pdf
Button zum nach oben scrollen