Abstract
Natural gas dehydration is essential in gas processing to avoid serious problems. As a pretreatment in a cryogenic Natural Gas Liquid (NGL) recovery process, it typically uses triethylene glycol (TEG) and followed by a Molecular Sieve dehydration to achieve 1 mg/Sm3 of water moisture in the dehydrated gas. This work studied the retrofitting of the existing dehydration unit to improve its performance in satisfying the gas moisture qualities. The retrofitted process uses recycled stripping gas schemes to achieve high purity TEG while minimizing the use of fresh stripping gas. The results revealed that the recycled stripping gas has provided sufficiently high purity TEG (>99.99%-wt), significantly reduced the heating and cooling duty by 80%, and reduced the electrical duty by 29% compared to the base case. The TAC was reduced by 38.1% from $ 725,245/year to $ 448,670/year. Through this study, the evaluated cases provide similar dehydration results with less equipment, simpler process, more energy-efficient, and better economic numbers. Therefore, a better process was obtained.
Funding source: Deputi Bidang Penguatan Riset dan Pengembangan, Kementerian Riset dan Teknologi / Badan Riset dan Inovasi Nasional
Award Identifier / Grant number: 1153/PKS/ITS/2020
Acknowledgment
The authors thank to Deputi Bidang Penguatan Riset dan Pengembangan, Kementerian Riset dan Teknologi/Badan Riset dan Inovasi Nasional for providing the financial support of this study through Penelitian Dasar Unggulan Perguruan Tinggi, Direktorat Riset dan Pengabdian kepada Masyarakat Institut Teknologi Sepuluh Nopember (ITS) Nomor: 1153/PKS/ITS/2020.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Deputi Bidang Penguatan Riset dan Pengembangan, Kementerian Riset dan Teknologi / Badan Riset dan Inovasi Nasional, through Penelitian Dasar Unggulan Perguruan Tinggi, Direktorat Riset dan Pengabdian kepada Masyarakat Institut Teknologi Sepuluh Nopember (ITS) Nomor: 1153/PKS/ITS/2020.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Gas composition used in this study.
| Component | Volume fraction |
|---|---|
| CO2 | 0.0267 |
| N2 | 0.0183 |
| Methane | 0.8319 |
| Ethane | 0.0530 |
| Propane | 0.0366 |
| i-Butane | 0.0100 |
| n-Butane | 0.0116 |
| i-Pentane | 0.0042 |
| n-Pentane | 0.0028 |
| n-Hexane | 0.0017 |
| n-Heptane | 0.0007 |
| n-Octane | 0.0002 |
| n-Nonane | 0.0001 |
| n-Decane | 0.0000 |
| C11+ | 0.0000 |
| H2O | 0.0022 |
| Total | 1.0000 |
Operating parameters for the absorption dehydration (conventional).
| Input data | Unit | Min. | Max. |
|---|---|---|---|
| Gas flow rate | 106 Sm3/d | 1.42 | 4.20 |
| Absorber pressure | kPa | 4500 | 6000 |
| Absorber temperature | °C | 30.0 | 40.0 |
| Lean TEG pressure | kPa | 4600 | 6100 |
| Lean TEG temperature | °C | 35.0 | 45.0 |
| Lean TEG purity | %-wt | 98.6 | 98.6 |
| Lean TEG flow rate | m3/h | 2.0 | 6.0 |
| Energy consumption | Unit | Value |
|---|---|---|
| Reboiler | GJ/h | 0.690 |
| Lean TEG Cooler | GJ/h | 0.163 |
| Rich Glycol Heater | GJ/h | 0.286 |
| Regen Overhead Cooler | GJ/h | 0.229 |
| Recycled Gas Comp Cooler | GJ/h | 0.000 |
| Stripping Gas Heater | GJ/h | 0.000 |
| TEG Circulation Pump | GJ/h | 0.044 |
| Recycled Gas Compressor | GJ/h | 0.000 |
| TEG losses | Unit | Value |
|---|---|---|
| From TEG Absorber | kg/h | 0.151 |
| From Flash Drum | kg/h | 0.026 |
| From Overhead Regenerator | kg/h | 0.099 |
| Recycled Gas Discharge Scrubber | kg/h | 0.000 |
Operating parameters for the molecular sieve dehydration.
| Input data | Unit | Min. | Max. |
|---|---|---|---|
| Gas flow rate | 106 Sm3/d | 1.42 | 4.20 |
| Pressure | kPa | 4300 | 5700 |
| Temperature (Absorption mode) | °C | 30.0 | 40.0 |
| Temperature (Regeneration mode) | °C | 280.0 | 290.0 |
| Regeneration gas flow rate | 106 Sm3/d | 0.142 | |
| Regeneration gas temperature | °C | 300.0 |
| Energy consumption | Unit | Value |
|---|---|---|
| Regeneration Gas Heater | GJ/h | 3.550 |
| Regeneration Gas Cooler | GJ/h | 3.280 |
| Regeneration Gas Compressor | GJ/h | 0.121 |
Operating parameters for the absorption dehydration (enhanced regeneration).
| Input data | Unit | Min. | Max. |
|---|---|---|---|
| Gas flow rate | 106 Sm3/d | 1.42 | 4.2 |
| Absorber pressure | kPa | 4500 | 6000 |
| Absorber temperature | °C | 30.0 | 40.0 |
| Lean TEG pressure | kPa | 4600 | 6100 |
| Lean TEG temperature | °C | 35.0 | 45.0 |
| Lean TEG purity | %-wt | 99.99 | 99.995 |
| Lean TEG flow rate | m3/h | 2.0 | 6.0 |
| Energy consumption | Unit | Value |
|---|---|---|
| Reboiler | GJ/h | 0.645 |
| Lean TEG Cooler | GJ/h | 0.165 |
| Rich Glycol Heater | GJ/h | 0.142 |
| Regen Overhead Cooler | GJ/h | 0.200 |
| Recycled Gas Comp Cooler | GJ/h | 0.278 |
| Stripping Gas Heater | GJ/h | 0.111 |
| TEG Circulation Pump | GJ/h | 0.044 |
| Recycled Gas Compressor | GJ/h | 0.074 |

Molecular sieve dehydration flow diagram – 2 towers in Adsorption and 1 tower in Cooling mode.

Typical operating modes in Molecular sieve dehydration.
Utility and chemical cost summary from Luyben [20].
| Utility cost | Unit | Value |
|---|---|---|
| Heating medium | $/GJ | 9.8 |
| Cooling water | $/GJ | 2.5 |
| Electricity | $/GJ | 16.8 |
| Chemical cost | Unit | Value |
|---|---|---|
| TEG make-up | $/kg | 2.71 |
| Stripping gas | $/GJ | 3.11 |
Capital cost estimation summary from Luyben [20].
| Equipment type | Estimated formula |
|---|---|
| Separator/Scrubber/Drum | 17640 d1.066 l0.802 |
| Heat exchanger | 7296 A0.65 |
| Centrifugal compressor | (1293)(517.3)(3.11)(hp)0.82/280 |
Equipment sizing results: Base case (TEG & Mole sieve dehydration).
| Equipment name | Type | Diameter (m) | Length (m) |
|---|---|---|---|
| TEG Contactor | Column | 1.6 | 5.85 |
| TEG Regenerator | Column | 0.4 | 1.00 |
| Flash Drum | Separator | 0.9 | 3.60 |
| Regen Overhead Drum | Separator | 0.6 | 2.10 |
| Equipment name | Type | Area (m2) |
|---|---|---|
| Heat Exchanger-1 | Heat Exchanger | 22.6 |
| Heat Exchanger-2 | Heat Exchanger | 22.6 |
| Regen Overhead Cooler | Heat Exchanger | 0.6 |
| Reboiler | Heat Exchanger | 22.6 |
| Rich Glycol Heater | Heat Exchanger | 5.0 |
| Equipment name | Type | Diameter (m) | Length (m) |
|---|---|---|---|
| Mole Sieve Tower 1 | Column | 1.92 | 5.5 |
| Mole Sieve Tower 2 | Column | 1.92 | 5.5 |
| Mole Sieve Tower 3 | Column | 1.92 | 5.5 |
| Water separator | Separator | 0.60 | 2.0 |
| Equipment name | Type | Area (m2) | Duty (GJ/h) |
|---|---|---|---|
| Regen Gas Cooler | Heat Exchanger | 50 | 3.280 |
| Regen Gas Heater | Heat Exchanger | 50 | 3.550 |
| Equipment name | Type | Duty (hp) |
|---|---|---|
| Regen Gas Compressor | Compressor | 45 |
Equipment sizing results: Evaluated case (recycled stripping gas with natural gas).
| Equipment name | Type | Diameter (m) | Length (m) |
|---|---|---|---|
| TEG Contactor | Column | 1.6 | 5.85 |
| TEG Regenerator | Column | 0.5 | 1.00 |
| TEG Stahl Column | Column | 0.5 | 1.00 |
| Recycle Gas Absorber | Column | 0.3 | 1.00 |
| Equipment name | Type | Area (m2) |
|---|---|---|
| Heat Exchanger-1 | Heat Exchanger | 22.6 |
| Heat Exchanger-2 | Heat Exchanger | 22.6 |
| Reboiler | Heat Exchanger | 22.6 |
| Lean TEG Cooler | Heat Exchanger | 5.0 |
| Rich Glycol Heater | Heat Exchanger | 5.0 |
| Regen Overhead Cooler | Heat Exchanger | 0.6 |
| Recycled Gas Comp Cooler | Heat Exchanger | 0.6 |
| Stripping Gas Heater | Heat Exchanger | 5.0 |
| Equipment name | Type | Diameter (m) | Length (m) |
|---|---|---|---|
| Flash Drum | Separator | 0.9 | 3.6 |
| Overhead Drum | Separator | 0.5 | 0.8 |
| Recycle Comp Suction Scrubber | Separator | 0.6 | 2.1 |
| Recycle Comp Disch Scrubber | Separator | 0.6 | 2.1 |
| Equipment name | Type | Duty (hp) |
|---|---|---|
| Recycle Compressor | Compressor | 27.5 |
Capital cost estimation for main equipment: base case (TEG dehydration).
| Equipment name | Type | Capital cost ($) |
|---|---|---|
| TEG Contactor | Column | 120,046 |
| TEG Regenerator | Column | 8426 |
| Flash Drum | Separator | 44,043 |
| Overhead Drum | Separator | 18,554 |
| Heat Exchanger-1 | Heat Exchanger | 55,368 |
| Heat Exchanger-2 | Heat Exchanger | 55,368 |
| Overhead Cooler | Heat Exchanger | 5235 |
| Reboiler | Heat Exchanger | 55,368 |
| TEG Cooler | Heat Exchanger | 20,769 |
| Rich Glycol Heater | Heat Exchanger | 20,769 |
| Total | 403,944 |
Capital cost estimation for main equipment: base case (mole sieve dehydration).
| Equipment name | Type | Capital cost ($) |
|---|---|---|
| Mole Sieve Tower 1 | Column | 138,761 |
| Mole Sieve Tower 2 | Column | 138,761 |
| Mole Sieve Tower 3 | Column | 138,761 |
| Regen Gas Cooler | Heat Exchanger | 92,772 |
| Regen Gas Heater | Heat Exchanger | 142,265 |
| Water separator | Separator | 17,842 |
| Regen Gas Compressor | Compressor | 168,491 |
| Total | 841,654 |
Operating cost estimation for main equipment: base case (TEG dehydration).
| Running hours (h) | Consumption (GJ/h) | Energy unit cost ($/GJ) | Utility cost ($) | |
|---|---|---|---|---|
| Heater duty | 8640 | 0.975 | 9.8 | 82,606 |
| Cooler duty | 8640 | 0.392 | 2.5 | 8465 |
| Electrical duty | 8640 | 0.044 | 16.8 | 6436 |
| Running hours (h) | Consumption (kg/h) | Chemical unit cost ($/kg) | Chemical cost ($) | |
|---|---|---|---|---|
| TEG make-up | 8640 | 0.2755 | 2.71 | 6541 |
Operating cost estimation for main equipment: base case (mole sieve dehydration).
| Running hours (h) | Consumption (GJ/h) | Energy unit cost ($/GJ) | Utility cost ($) | |
|---|---|---|---|---|
| Heater duty | 4380 | 3.55 | 9.8 | 152,380 |
| Cooler duty | 4380 | 3.28 | 2.5 | 35,916 |
| Electrical duty | 8760 | 0.121 | 16.8 | 17,792 |
Capital Cost estimation for main equipment: Evaluated case (Recycled Stripping Gas with natural gas).
| Equipment name | Type | Capital cost ($) |
|---|---|---|
| TEG Contactor | Column | 120,046 |
| TEG Regenerator | Column | 8426 |
| TEG Stahl Column | Column | 8426 |
| Recycle Gas Absorber | Column | 4888 |
| Heat Exchanger-1 | Heat Exchanger | 53,368 |
| Heat Exchanger-2 | Heat Exchanger | 53,368 |
| Reboiler | Heat Exchanger | 55,368 |
| Lean TEG Cooler | Heat Exchanger | 20,769 |
| Rich Glycol Heater | Heat Exchanger | 20,769 |
| Regen Overhead Cooler | Heat Exchanger | 5235 |
| Recycled Gas Comp Cooler | Heat Exchanger | 5235 |
| Stripping Gas Heater | Heat Exchanger | 20,769 |
| Flash Drum | Separator | 44,043 |
| Recycle Comp Suction Scrubber | Separator | 18,554 |
| Recycle Comp Discharge Scrubber | Separator | 18,554 |
| Recycle Compressor | Compressor | 112,511 |
| Total | 574,326 |
Operating Cost estimation for main equipment: Evaluated case (Recycled Stripping Gas with natural gas).
| Running hours (h) | Consumption (GJ/h) | Energy unit cost ($/GJ) | Utility cost ($) | |
|---|---|---|---|---|
| Heater duty | 8640 | 0.898 | 9.8 | 76,035 |
| Cooler duty | 8640 | 0.6425 | 2.5 | 13,878 |
| Electrical duty | 8640 | 0.1179 | 16.8 | 17,118 |
| Running hours (h) | Consumption (kg/h) | Chemical unit cost ($/kg) | Chemical cost ($) | |
|---|---|---|---|---|
| TEG make-up | 8640 | 0.2017 | 2.71 | 4723 |
| Running hours (h) | Stripping gas consumption (Sm3/h) | Stripping gas unit cost ($/GJ) | Stripping gas cost ($) | |
|---|---|---|---|---|
| Stripping gasa | 8640 | 131.8 | 3.11 | 145,475 |
-
aGas heating value: 40.96 MJ/Sm3.
References
1. Mokhatab, S, Poe, WA, Mak, JY. Natural gas dehydration. In: Handbook of natural gas transmission and processing, 3rd ed. Waltham, MA, USA: Gulf Professional Publishing; 2015. pp. 223–63.10.1016/B978-0-12-801499-8.00007-9Suche in Google Scholar
2. Kong, ZY, Mahmoud, A, Liu, S, Sunarso, J. Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency: available methods and recent developments. J Nat Gas Sci Eng. Elsevier 2018;56:486–503. https://doi.org/10.1016/j.jngse.2018.06.008.Suche in Google Scholar
3. Carrol, J. Natural gas hydrates: a guide for engineers, 2nd ed. Burlington, MA, USA: Gulf Professional Publishing; 2009.Suche in Google Scholar
4. Kidnay, AJ, Parrish, WR. Fundamentals of natural gas processing. In: Faulkner, LL, editor. Fundamentals of natural gas processing. Boca Raton, FL: Taylor & Francis Group; 2011.10.1201/b14397Suche in Google Scholar
5. Netusil, M, Ditl, P. Comparison of three methods for natural gas dehydration. J Nat Gas Chem 2011;20:471–6. https://doi.org/10.1016/s1003-9953(10)60218-6.Suche in Google Scholar
6. Uerdingen, E, Fischer, U, Gani, R, Hungerbühler, K. A new retrofit design methodology for identifying, developing, and evaluating retrofit projects for cost-efficiency improvements in continuous chemical processes. Ind Eng Chem Res 2005;44:1842–53. https://doi.org/10.1021/ie049065r.Suche in Google Scholar
7. Saidi, M, Parhoudeh, M, Rahimpour, MR. Mitigation of BTEX emission from gas dehydration unit by application of Drizo process: a case study in Farashband gas processing plant; Iran. J Nat Gas Sci Eng 2014;19:32–45. https://doi.org/10.1016/j.jngse.2014.04.008.Suche in Google Scholar
8. Kong, ZY, Melvin Wee, XJ, Mahmoud, A, Yu, A, Liu, S, Sunarso, J. Development of a techno-economic framework for natural gas dehydration via absorption using tri-ethylene glycol: a comparative study between DRIZO and other dehydration processes. S Afr J Chem Eng. Institution of Chemical Engineers (IChemE) 2020;31:17–24. https://doi.org/10.1016/j.sajce.2019.11.001.Suche in Google Scholar
9. Rahimpour, MR, Jokar, SM, Feyzi, P, Asghari, R. Investigating the performance of dehydration unit with Coldfinger technology in gas processing plant. J Nat Gas Sci Eng. Elsevier B.V 2013;12:1–12. https://doi.org/10.1016/j.jngse.2013.01.001.Suche in Google Scholar
10. Gad, MS, Elmawgoud, HA, Aboul-Fotouh, TM, El-Shafie, MA. The economic comparison between dry natural gas and nitrogen gas for stripping water vapor from glycol in the gas dehydration process. Int J Eng Sci Invent 2016;5:8–12.Suche in Google Scholar
11. Neagu, M, Cursaru, DL. Technical and economic evaluations of the triethylene glycol regeneration processes in natural gas dehydration plants. J Nat Gas Sci Eng 2017;37:327–40. https://doi.org/10.1016/j.jngse.2016.11.052.Suche in Google Scholar
12. Chebbi, R, Qasim, M, Abdel Jabbar, N. Optimization of triethylene glycol dehydration of natural gas. Energy Reports [Internet]. Elsevier Ltd 2019;5:723–32. https://doi.org/10.1016/j.egyr.2019.06.014.Suche in Google Scholar
13. Kong, ZY, Mahmoud, A, Liu, S, Sunarso, J. Development of a techno-economic framework for natural gas dehydration via absorption using tri-ethylene glycol: a comparative study on conventional and stripping gas dehydration processes. J Chem Technol Biotechnol 2018;94:955–63. https://doi.org/10.1002/jctb.5844.Suche in Google Scholar
14. Affandy, SA, Kurniawan, A, Handogo, R, Sutikno, JP, Chien, I. Technical and economic evaluation of triethylene glycol regeneration process using flash gas as stripping gas in a domestic natural gas dehydration unit. Eng Reports 2020;2:1–15. https://doi.org/10.1002/eng2.12153.Suche in Google Scholar
15. Smith, RS, Humphrey, SE. High purity glycol design parameters and operating experience. In: 44th Annual Laurence Reid Gas Conditioning Conference. Norman, Oklahoma, USA; 1995.Suche in Google Scholar
16. Skiff, T, Szuts, A, Szujo, V, Toth, A. Drizo unit competes with solid bed desiccant dehydration. In: Laurence Reid Gas Conditioning Conference; 2002. pp. 213–21.Suche in Google Scholar
17. Gandhidasan, P, Al-Farayedhi, AA, Al-Mubarak, AA. Dehydration of natural gas using solid desiccants. Energy 2001;26:855–68. https://doi.org/10.1016/s0360-5442(01)00034-2.Suche in Google Scholar
18. Watanasiri, S, Sachdev, R, Chang, Y-T, Dyment, J. Dehydration with Aspen HYSYS®: validation of the CPA property. Package [Internet]. Aspentech. 2015 [cited 2020 Jun 14]. Available from: https://www.aspentech.com/en/resources/white-papers/dehydration-with-aspen-hysys-validation-of-the-cpa-property-package.Suche in Google Scholar
19. Campbell, JM. Gas conditioning & processing, 7th ed. Norman Oklahoma, USA: Campbell Petroleum Series; 1992, vol 2.Suche in Google Scholar
20. Luyben, WL. Principles and case studies of simultaneous design. Hoboken, New Jersey: John Wiley & Sons; 2011.10.1002/9781118001653Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Viscosity prediction of hydrocarbon binary mixture using an artificial neural network-group contribution method
- Design of an environmentally friendly fuel based on a synthetic composite nano-catalyst through parameter estimation and process modeling
- Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating
- A comparative study of thermodynamic models to describe the VLE of the ternary electrolytic mixture H2O–NH3–CO2
- Murphree vapor efficiency prediction in SCC columns by computational fluid dynamics analysis
- Retrofitting recycled stripping gas in a glycol dehydration regeneration unit
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Viscosity prediction of hydrocarbon binary mixture using an artificial neural network-group contribution method
- Design of an environmentally friendly fuel based on a synthetic composite nano-catalyst through parameter estimation and process modeling
- Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating
- A comparative study of thermodynamic models to describe the VLE of the ternary electrolytic mixture H2O–NH3–CO2
- Murphree vapor efficiency prediction in SCC columns by computational fluid dynamics analysis
- Retrofitting recycled stripping gas in a glycol dehydration regeneration unit