Startseite Model based control strategies to control voltage of Proton Exchange Membrane Fuel Cell
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Model based control strategies to control voltage of Proton Exchange Membrane Fuel Cell

  • Mullapudi Siva , Snehal Meshram , Dipesh S Patle und Uday Bhaskar Babu Gara EMAIL logo
Veröffentlicht/Copyright: 23. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present work deals with the evaluation of model based control strategies for a PEM fuel cell to control voltage. PEM fuel cell is an electrochemical device that converts the chemical energy to electrical energy. Stack voltage is affected by many factors like stack temperature, moisture content of the membrane, partial pressure of hydrogen and air, inlet rate of hydrogen and air and also fuel starvation affects the rate of reaction and hence the voltage produced. In this work, two single input single output models are taken with stack voltage as controlled variable and hydrogen and air flow rate as manipulated variables respectively. The simulation study on two different control structures i.e., feedback and feedback plus feed forward control structures evaluates the effectiveness of proposed controllers concerning set-point tracking and disturbance rejection. Comparative study is carried out by simulations by implementing various model based control strategies, PI, IMC-PID and MPC. The results shows that MPC gives best results in terms of Integral Square error (ISE), Integral Absolute error (IAE) and controller effort (TV). In addition, robust stability analysis is carried out for uncertainty in the process parameters. Also, the controller fragility is studied for uncertainty in the controller parameters.


Corresponding author: Bhaskar Babu Gara, Chemical Engineering Department, National Institute of Technology Warangal, Warangal, Telangana, 506004, India, E-mail:

Funding source: Department of Science & Technology, Government of India

Award Identifier / Grant number: EEQ/2018/000993

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work has been funded by the Science and Engineering Research Board, a statutory body of Department of Science & Technology (DST), Government of India. (The project no. EEQ/2018/000993).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wang, FC, Chen, HT, Yang, YP, Chang, HP, Yen, JY. Multivariable system identification and robust control of a proton exchange membrane fuel cell system. In: 2007 46th IEEE Conference on Decision and Control IEEE; 2007:6118–23 p. Dec 12.10.1109/CDC.2007.4434219Suche in Google Scholar

2. Pukrushpan, JT. Modeling and control of fuel cell systems and fuel processors [Doctoral dissertation]. Michigan: University of Michigan; 2003.Suche in Google Scholar

3. Lü, X, Miao, X, Xue, Y, Deng, L, Wang, M, Gu, D, et al. Dynamic modeling and fractional order PI λDμ control of PEM fuel cell. Int J Electrochem Sci 2017;12:7518–36. https://doi.org/10.20964/2017.08.12.10.20964/2017.08.12Suche in Google Scholar

4. Daud, WR, Rosli, RE, Majlan, EH, Hamid, SA, Mohamed, R, Husaini, T. PEM fuel cell system control: a review. Renew Energy 2017;113:620–38. https://doi.org/10.1016/j.renene.2017.06.027. Dec 1.10.1016/j.renene.2017.06.027Suche in Google Scholar

5. Jia, J, Li, Q, Wang, Y, Cham, YT, Han, M. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell. IEEE Trans Energy Convers 2009;24:283–91. https://doi.org/10.1109/tec.2008.2011837. Jan 27.10.1109/TEC.2008.2011837Suche in Google Scholar

6. Musio, F, Tacchi, F, Omati, L, Stampino, PG, Dotelli, G, Limonta, S, et al. PEMFC system simulation in MATLAB-Simulink® environment. Int J Hydrogen Energy 2011;36:8045–52. https://doi.org/10.1016/j.ijhydene.2011.01.093. Jul 1.10.1016/j.ijhydene.2011.01.093Suche in Google Scholar

7. Saadi, A, Becherif, M, Hissel, D, Ramadan, HS. Dynamic modeling and experimental analysis of PEMFCs: a comparative study. Int J Hydrogen Energy 2017;42:1544–57. https://doi.org/10.1016/j.ijhydene.2016.07.180. Jan 12.10.1016/j.ijhydene.2016.07.180Suche in Google Scholar

8. Abdin, Z, Webb, CJ, Gray, EM. PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters. Energy 2016;116:1131–44. https://doi.org/10.1016/j.energy.2016.10.033. Dec 1.10.1016/j.energy.2016.10.033Suche in Google Scholar

9. Garcia, CE, Morari, M. Internal model control. A unifying review and some new results. Ind Eng Chem Process Des Dev 1982;21:308–23. https://doi.org/10.1021/i200017a016. Apr 21.10.1021/i200017a016Suche in Google Scholar

10. Patel, PU, Pandya, HD. Control and grid synchronization of fuel cell based inverter using matlab. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) IEEE; 2018:650–5 p. Mar 29.10.1109/ICECA.2018.8474752Suche in Google Scholar

11. Dutta, S, Shimpalee, S, Van Zee, JW. Three-dimensional numerical simulation of straight channel PEM fuel cells. J Appl Electrochem 2000;30:135–46. https://doi.org/10.1023/a:1003964201327. Feb 1.10.1023/A:1003964201327Suche in Google Scholar

12. Mann, RF, Amphlett, JC, Hooper, MA, Jensen, HM, Peppley, BA, Roberge, PR. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J Power Sources 2000;86:173–80. https://doi.org/10.1016/s0378-7753(99)00484-x. Mar 1.10.1016/S0378-7753(99)00484-XSuche in Google Scholar

13. Puranik, SV, Keyhani, A, Khorrami, F. State-space modeling of proton exchange membrane fuel cell. IEEE Trans Energy Convers 2010;25:804–13. https://doi.org/10.1109/tec.2010.2047725. Jul 1.10.1109/TEC.2010.2047725Suche in Google Scholar

14. Woo, CH, Benziger, JB. PEM fuel cell current regulation by fuel feed control. Chem Eng Sci 2007;62:957–68. https://doi.org/10.1016/j.ces.2006.10.027. Feb 1.10.1016/j.ces.2006.10.027Suche in Google Scholar

15. Serra, M, Aguado, J, Ansede, X, Riera, J. Controllability analysis of decentralised linear controllers for polymeric fuel cells. J Power Sources 2005;151:93–102. https://doi.org/10.1016/j.jpowsour.2005.02.050. Oct 10.10.1016/j.jpowsour.2005.02.050Suche in Google Scholar

16. Rodatz, P, Paganelli, G, Guzzella, L. Optimization of fuel cell systems through variable pressure control. In: Proceedings of the American control conference; 2003, vol 3:2043–8 p.10.1109/ACC.2003.1243375Suche in Google Scholar

17. Kim, TH, Kim, SH, Kim, W, Lee, JH, Choi, W. Development of the novel control algorithm for the small proton exchange membrane fuel cell stack without external humidification. In: 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) IEEE; 2010:2166–73 p. Feb 21.10.1109/APEC.2010.5433537Suche in Google Scholar

18. Sedghisigarchi, K, Feliachi, A. Dynamic and transient analysis of power distribution systems with fuel Cells-part I: fuel-cell dynamic model. IEEE Trans Energy Convers 2004;19:423–8. https://doi.org/10.1109/tec.2004.827039. May 24.10.1109/TEC.2004.827039Suche in Google Scholar

19. Caux, S, Lachaize, J, Fadel, M, Shott, P, Nicod, L. Modelling and control of a fuel cell system and storage elements in transport applications. J Process Contr 2005;15:481–91. https://doi.org/10.1016/j.jprocont.2004.08.002. Jun 1.10.1016/j.jprocont.2004.08.002Suche in Google Scholar

20. Takeuchi, A, Yamashita, N, Yachi, T. Distributed polymer electrolyte fuel cell generation system with load power restriction control. In: IECON’01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 37243) IEEE; 2001, vol 2:1297–302 p.10.1109/IECON.2001.975969Suche in Google Scholar

21. Cruz Rojas, A, Lopez Lopez, G, Gomez-Aguilar, JF, Alvarado, VM, Sandoval Torres, CL. Control of the air supply subsystem in a PEMFC with balance of plant simulation. Sustainability 2017;9:73. https://doi.org/10.3390/su9010073. Jan 9.10.3390/su9010073Suche in Google Scholar

22. Hasikos, J, Sarimveis, H, Zervas, PL, Markatos, NC. Operational optimization and real-time control of fuel-cell systems. J Power Sources 2009;193:258–68. https://doi.org/10.1016/j.jpowsour.2009.01.048. Aug 1.10.1016/j.jpowsour.2009.01.048Suche in Google Scholar

23. Arce, A, Alejandro, J, Bordons, C, Ramirez, DR. Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell. IEEE Trans Ind Electron 2009;57:1892–905. https://doi.org/10.1109/TIE.2009.2029524.10.1109/TIE.2009.2029524Suche in Google Scholar

24. Niknezhadi, A, Allue-Fantova, M, Kunusch, C, Ocampo-Martı´nez, C. Design and implementation of LQR/LQG strategies for oxygen stoichiometry control in PEM fuel cells based systems. J Power Sources 2011;196:4277e82. https://doi.org/10.1016/j.jpowsour.2010.11.059.10.1016/j.jpowsour.2010.11.059Suche in Google Scholar

25. Talj, R, Ortega, R, Astolfi, A. Air supply system of a PEM fuel cell model: passivity and robust PI control. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference IEEE; 2011:7765–70 p. Dec 12..10.1109/CDC.2011.6160698Suche in Google Scholar

26. Gruber, JK, Bordons, C, Oliva, A. Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model. Contr Eng Pract 2012;20:205–17. https://doi.org/10.1016/j.conengprac.2011.10.014. Feb 1.10.1016/j.conengprac.2011.10.014Suche in Google Scholar

27. Strahl, S, Husar, A, Puleston, P, Riera, J. Performance improvement by temperature control of an open‐cathode PEM fuel cell system. Fuel Cell 2014;14:466–78. https://doi.org/10.1002/fuce.201300211. Jun.10.1002/fuce.201300211Suche in Google Scholar

28. Vasu, G, Tangirala, AK. Control-orientated thermal model for proton-exchange membrane fuel cell systems. J Power Sources 2008;183:98–108. https://doi.org/10.1016/j.jpowsour.2008.03.087. Aug 15.10.1016/j.jpowsour.2008.03.087Suche in Google Scholar

29. Bin, Y, Rajashekara, K, Li, Y, Xu, H. Cascaded control of output power for PEMFC systems. In: 2017 36th Chinese Control Conference (CCC) IEEE; 2017:9232–7 p. Jul 26.10.23919/ChiCC.2017.8028827Suche in Google Scholar

30. Ranganayakulu, R, Babu, GU, Rao, AS. Analytical design of enhanced fractional filter PID controller for improved disturbance rejection of second order plus time delay processes. Chem Prod Process Model 2018;14. https://doi.org/10.1515/cppm-2018-0012.10.1515/cppm-2018-0012Suche in Google Scholar

Received: 2020-05-11
Revised: 2020-08-07
Accepted: 2020-08-30
Published Online: 2020-09-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2020-0046/pdf
Button zum nach oben scrollen