Startseite Inter-Communicative Decentralized Multi-Scale Control (ICD-MSC) Scheme: A New Approach to Overcome MIMO Process Interactions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inter-Communicative Decentralized Multi-Scale Control (ICD-MSC) Scheme: A New Approach to Overcome MIMO Process Interactions

  • Jobrun Nandong EMAIL logo und Zhuquan Zang
Veröffentlicht/Copyright: 18. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Decentralized PID control has been extensively used in process industry due to its functional simplicity. But designing an effective decentralized PID control system is very challenging because of process interactions and dead times, which often impose limitations on control performance. In practice, to alleviate the detrimental effect of process interactions on control performance, decoupling controllers are often incorporated into a decentralized control scheme. In many cases, these conventional decoupling controllers are not physically realizable or too complex for practical implementation. In this paper, we propose an alternative scheme to overcome the performance limitation imposed by process interactions. This new control scheme is extended from the SISO multi-scale control scheme previously developed for nonminimum-phase processes. The salient feature of the new control scheme lies in its communicative structure enabling collaborative communication among all the sub-controllers in the system. This communicative structure serves the purpose of reducing the detrimental effect of process interactions leading to improved control performance and performance robustness. Extensive numerical study shows that the new control scheme is able to outperform some existing decentralized control schemes augmented with traditional decoupling controllers.

Acknowledgment

This work is partially supported by Curtin Sarawak Research Cluster Fund under the auspices of Intelligent Systems, Design and Control (ISDC) Research Area at Curtin University, Malaysia.

References

1. LeeJ, ChoW, EdgarTF. Multiloop PI controller tuning for interacting multivariable processes. Comput Chem Eng1998;22:171123.10.1016/S0098-1354(98)00230-0Suche in Google Scholar

2. HuangHP, JengJC, ChiangCH, PanW. A direct method for multi-loop PI/PID controller design. J Process Control2003;13:76986.10.1016/S0959-1524(03)00009-XSuche in Google Scholar

3. LuybenWL. Simple method for tuning SISO controllers in multivariable systems. Ind Eng Chem Process Des Dev1986;25:65460.10.1021/i200034a010Suche in Google Scholar

4. ZieglerJG, NicholsNB. Optimum settings for automatic controllers. Trans ASME1942;64:75968.10.1115/1.4019264Suche in Google Scholar

5. LeeJ, EdgarTF. Multiloop PI/PID control system improvement via adjusting the dominant pole or the peak amplitude ratio. Chem Eng Sci2006;61:165866.10.1016/j.ces.2005.08.044Suche in Google Scholar

6. MayneDQ. The design of linear multivariable systems. Automatica1973;9:2017.10.1016/0005-1098(73)90074-5Suche in Google Scholar

7. HovdM, SkogestadS. Sequential design of decentralized controllers. Automatica1994;30:16017.10.1016/0005-1098(94)90099-XSuche in Google Scholar

8. ShiuSJ, HwangSH. Sequential design method for multivariable decoupling and multiloop PID controllers. Ind Eng Chem Res1998;37:10719.10.1021/ie970352nSuche in Google Scholar

9. LohA, HungC, QuekC, VasnaniV. Auto-tuning of multi-loop proportional-integral controllers using relay feedback. Ind Eng Chem Res1993;32:11027.10.1021/ie00018a017Suche in Google Scholar

10. GrosdidierP, MorariM. Interaction measures for systems under decentralized control. Automatica1986;22:30920.10.1016/0005-1098(86)90029-4Suche in Google Scholar

11. VuT, LeeM. Independent design of multi-loop PI/PID controllers for interacting multivariable processes. J Process Control2010;20:92233.10.1016/j.jprocont.2010.06.012Suche in Google Scholar

12. JungJ, ChoiJ, LeeJ. One-parameter method for a multiloop control system design. Ind Eng Chem Res1999;38:15808.10.1021/ie980314jSuche in Google Scholar

13. ChenD, SeborgD. Design of decentralized PI control systems based on Nyquist stability analysis. J Process Control2003;13:2739.10.1016/S0959-1524(02)00021-5Suche in Google Scholar

14. LeeM, LeeK, KimC, LeeJ. Analytical design of multi-loop PID controllers for desired closed-loop responses. AIChE J2004;50:16315.10.1002/aic.10166Suche in Google Scholar

15. AstromK, HagglundT. PID controllers: theory, design, and tuning, 2nd ed. Research Triangle Park, NC: Instrument Society of America, 1995.Suche in Google Scholar

16. YuC. Autotuning of PID controllers: relay feedback approach. New York: Springer, 1999.10.1007/978-1-4471-3636-1Suche in Google Scholar

17. ShinskeyFG. Process control systems: application, design and adjustment, 4th ed. New York: McGraw-Hill, 1996.Suche in Google Scholar

18. GagnonE, PomerleauA, DesbiensA. Simplified, ideal or inverted decoupling. ISA Trans1998;37:26576.10.1016/S0019-0578(98)00023-8Suche in Google Scholar

19. WallerK. Decoupling in distillation. AIChE J1974;20:5924.10.1002/aic.690200321Suche in Google Scholar

20. GarridoJ, VazquezF, MorillaF. Centralized multivariable control by simplified decoupling. J Process Control2012;22:104462.10.1016/j.jprocont.2012.04.008Suche in Google Scholar

21. RajapandiyanC, ChidambaramM. Controller design for MIMO processes based on simple decoupled equivalent transfer functions and simplified decouplers. Ind Eng Chem Res2012;51:12398410.10.1021/ie301448cSuche in Google Scholar

22. GarridoJ, VazquezF, MorillaF. An extended approach of inverted decoupling. J Process Control2011;21:5568.10.1016/j.jprocont.2010.10.004Suche in Google Scholar

23. ChenP, ZhangW. Improvement on an inverted decoupling technique for a class of stable linear multivariable processes. ISA Trans2007;46:199210.10.1016/j.isatra.2006.09.002Suche in Google Scholar PubMed

24. NandongJ, ZangZ. Novel multiscale control scheme for nonminimum-phase processes. Ind Eng Chem Res2013;52:824859.10.1021/ie302839vSuche in Google Scholar

25. NandongJ, ZangZ. High-performance multi-scale control scheme for stable, integrating and unstable time-delay processes. J Process Control2013;23:133343.10.1016/j.jprocont.2013.08.007Suche in Google Scholar

26. ChienIL, HuangHP, YangJC. A simple multi-loop tuning method for PID controllers with no proportional kick. Ind Eng Chem Res1999;38:145668.10.1021/ie980595vSuche in Google Scholar

27. NandongJ, SamyudiaY, TadeMO. Dynamic simulation and optimization of two-stage extractive alcoholic fermentation process: design impact on controllability. Chem Prod Process Model2006;1:19342659.10.2202/1934-2659.1019Suche in Google Scholar

28. CostaAC, AtalaDI, MaugeriF, MacielR. Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochem2001;37:12537.10.1016/S0032-9592(01)00188-1Suche in Google Scholar

29. SharmaS, RangaiahGP. Modeling and optimization of a fermentation process integrated with cell recycling and pervaporation for multiple objectives. Ind Eng Chem Res2012;51:554251.10.1021/ie202205hSuche in Google Scholar

30. NandongJ, SamyudiaY, TadeMO. Novel PCA-based technique for identification of dominant variables for partial control. Chem Prod Process Model2010;5:19342659.10.2202/1934-2659.1442Suche in Google Scholar

Published Online: 2014-9-18
Published in Print: 2014-12-1

©2014 by De Gruyter

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2014-0002/html
Button zum nach oben scrollen