Startseite Neuro-Fuzzy-Based Control for Parallel Cascade Control
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Neuro-Fuzzy-Based Control for Parallel Cascade Control

  • R. Karthikeyan EMAIL logo , K. Manickavasagam , Shikha Tripathi und K.V.V. Murthy
Veröffentlicht/Copyright: 8. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper discusses the application of adaptive neuro-fuzzy inference system (ANFIS) control for a parallel cascade control system. Parallel cascade controllers have two controllers, primary and secondary controllers in cascade. In this paper the primary controller is designed based on neuro-fuzzy approach. The main idea of fuzzy controller is to imitate human reasoning process to control ill-defined and hard to model plants. But there is a lack of systematic methodology in designing fuzzy controllers. The neural network has powerful abilities for learning, optimization and adaptation. A combination of neural networks and fuzzy logic offers the possibility of solving tuning problems and design difficulties of fuzzy logic. Due to their complementary advantages, these two models are integrated together to form more robust learning systems, referred to as adaptive neuro-fuzzy inference system (ANFIS). The secondary controller is designed using the internal model control approach. The performance of the proposed ANFIS-based control is evaluated using different case studies and the simulated results reveal that the ANFIS control approach gives improved servo and regulatory control performances compared to the conventional proportional integral derivative controller.

References

1. Luyben W. Parallel cascade control. Ind Eng Chem Fund 1973;12:463–7.10.1021/i160048a012Suche in Google Scholar

2. Patke GN, Deshpande PB. Inferential and parallel cascade control schemes for distillation columns. Ind Eng Chem Process Des 1982;21:266–72.10.1021/i200017a009Suche in Google Scholar

3. Yu CC. Design of Parallel cascade control for disturbance rejection. AICHE J 1988;44:1833–8.Suche in Google Scholar

4. Shen H, Yu CC. Selection of secondary measurement for parallel cascade control. AICHE J 1990;36:1267–71.10.1002/aic.690360818Suche in Google Scholar

5. Bramilla A, Semino D. Nonlinear filter in cascade control schemes. Ind Eng Chem Res 1992;31:2694–9.10.1021/ie00012a010Suche in Google Scholar

6. Semino D, Bramilla A. An efficient structure for parallel cascade control. Ind Eng Chem Res 1996;35:1845–52.10.1021/ie950710rSuche in Google Scholar

7. Mc Avay TJ, Ye N, Gang C. Nonlinear inferential parallel cascade control. Ind Eng Chem Res 1996;35:130–7.10.1021/ie950298fSuche in Google Scholar

8. Pottmann M, Henson M, Oginnaike BA, Schwaber JS. Parallel control strategy abstracted from the bare receptor reflex. Chem Eng Sci 1996;51:931–5.10.1016/0009-2509(95)00338-XSuche in Google Scholar

9. Chen J, Huang SC, Yea Y. Achievable performance assessment and design for parallel cascade control systems. J Chem Eng Japan 2005;38:188–201.10.1252/jcej.38.188Suche in Google Scholar

10. Lee Y, Skliar M, Lee M. Analytical method of PID controller design for parallel cascade control. J Process Control 2006;16:809–18.10.1016/j.jprocont.2006.03.002Suche in Google Scholar

11. Seshagiri Rao A, Seethaladevi S, Uma S, Chidambaram M. Enhancing the performance of parallel cascade control using smith predictor. ISA Trans 2009;48:220–7.10.1016/j.isatra.2008.10.011Suche in Google Scholar PubMed

12. Mamdani EH. Applications of fuzzy algorithms for control of simple dynamic plants. Proc IEE 1974;12:1585–8.10.1049/piee.1974.0328Suche in Google Scholar

13. Karthikeyan R, Pahikkala T, Virtanen S, Isoaho J, Manickavasagam K, Murthy KVV. Fuzzy logic based control for parallel cascade control. ICGST-ACSE J 2010;10:39–48.Suche in Google Scholar

14. Niu P, Li G, Zhang M. Design research of an adaptive-fuzzy-neural controller. J Adv Inf Technol 2011;2:122–7.10.4304/jait.2.2.122-127Suche in Google Scholar

15. Sandhu GS, Rattan KS. Design of a neuro-fuzzy controller. Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation, 1997:3170–5.Suche in Google Scholar

16. Jang JSR, Sun CT. Neuro-Fuzzy modelling and control. Proc IEEE 1997;83:378–406.Suche in Google Scholar

17. Smith OJM. Closed control of loops with dead time. Chem Eng Process 1957;3:217–19.Suche in Google Scholar

18. Normey-Rico JE, Bordon C, Camacho EF. Improving the robustness of dead time compensating PI controllers. Control Eng Practice 1997;13:801–10.10.1016/S0967-0661(97)00064-6Suche in Google Scholar

19. Subburaj P, Manickavasagam K. Automatic generation control of multi area power system using Fuzzy logic controller. Eur Trans Electric Power UK 2008;18:266–80.10.1002/etep.175Suche in Google Scholar

20. Mouloud DA, Palis F, Zeghbib A. ANFIS based modelling and control of non-linear systems: a tutorial. Proceeding of the IEEE International Conference on Systems, Man and Cybernetics, 2004:3433–8.Suche in Google Scholar

21. Mohandas KP, Karimulla S. Fuzzy and Neuro-Fuzzy modelling and control of nonlinear systems. Proceedings of the Second International Conference on Electrical and Electronics Engineering (ELECO’2001), Bursa, Turkey, 2001:197–201.Suche in Google Scholar

22. Allaoua B, Laoufi BA, Gasbaoui B, Abderrahmani A. Nuero-Fuzzy DC motor control using particle swarm optimization. Leonardo Electronic Journal of Practices and Technologies, 2009;15:1–18.Suche in Google Scholar

23. Skogestad S. Simple analytic rules for model reduction and PID controller tuning. J Process Control 2003;13:291–309.10.1016/S0959-1524(02)00062-8Suche in Google Scholar

Received: 2013-1-25
Accepted: 2013-5-17
Published Online: 2013-6-8

©2013 by Walter de Gruyter Berlin / Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2013-0002/pdf
Button zum nach oben scrollen