Abstract
This article on nonconforming schemes for m harmonic problems
simultaneously treats the Crouzeix–Raviart (
Dedicated to Peter Wriggers on the occasion of his seventieth birthday
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: CA 151/22-2
Funding statement: The research of the first author has been supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 under the project “foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics” (CA 151/22-2). The finalization of this paper has been supported by SPARC project (id 235) entitled the mathematics and computation of plates.
References
[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, AMS Chelsea, Providence, 2010. 10.1090/chel/369Suche in Google Scholar
[2] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32. 10.1051/m2an/1985190100071Suche in Google Scholar
[3] D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner–Mindlin plate, SIAM J. Numer. Anal. 26 (1989), no. 6, 1276–1290. 10.1137/0726074Suche in Google Scholar
[4] R. Becker, S. Mao and Z. Shi, A convergent nonconforming adaptive finite element method with quasi-optimal complexity, SIAM J. Numer. Anal. 47 (2010), no. 6, 4639–4659. 10.1137/070701479Suche in Google Scholar
[5] L. Beirão da Veiga, J. Niiranen and R. Stenberg, A posteriori error estimates for the Morley plate bending element, Numer. Math. 106 (2007), no. 2, 165–179. 10.1007/s00211-007-0066-1Suche in Google Scholar
[6] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980), no. 4, 556–581. 10.1002/mma.1670020416Suche in Google Scholar
[7] S. C. Brenner, Forty years of the Crouzeix–Raviart element, Numer. Methods Partial Differential Equations 31 (2015), no. 2, 367–396. 10.1002/num.21892Suche in Google Scholar
[8]
S. C. Brenner and L.-Y. Sung,
[9] C. Carstensen, Lectures on adaptive mixed finite element methods, Mixed Finite Element Technologies, CISM Courses and Lect. 509, Springer, Vienna (2009), 1–56. 10.1007/978-3-211-99094-0_1Suche in Google Scholar
[10] C. Carstensen, S. Bartels and S. Jansche, A posteriori error estimates for nonconforming finite element methods, Numer. Math. 92 (2002), no. 2, 233–256. 10.1007/s002110100378Suche in Google Scholar
[11] C. Carstensen, M. Eigel, R. H. W. Hoppe and C. Löbhard, A review of unified a posteriori finite element error control, Numer. Math. Theory Methods Appl. 5 (2012), no. 4, 509–558. 10.4208/nmtma.2011.m1032Suche in Google Scholar
[12] C. Carstensen and D. Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math. 126 (2014), no. 1, 33–51. 10.1007/s00211-013-0559-zSuche in Google Scholar
[13] C. Carstensen, D. Gallistl and J. Hu, A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles, Numer. Math. 124 (2013), no. 2, 309–335. 10.1007/s00211-012-0513-5Suche in Google Scholar
[14] C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes, Comput. Math. Appl. 68 (2014), no. 12, 2167–2181. 10.1016/j.camwa.2014.07.019Suche in Google Scholar
[15] C. Carstensen, D. Gallistl and M. Schedensack, Adaptive nonconforming Crouzeix–Raviart FEM for eigenvalue problems, Math. Comp. 84 (2015), no. 293, 1061–1087. 10.1090/S0025-5718-2014-02894-9Suche in Google Scholar
[16] C. Carstensen and J. Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comp. 83 (2014), no. 290, 2605–2629. 10.1090/S0025-5718-2014-02833-0Suche in Google Scholar
[17] C. Carstensen, J. Gedicke and D. Rim, Explicit error estimates for Courant, Crouzeix–Raviart and Raviart–Thomas finite element methods, J. Comput. Math. 30 (2012), no. 4, 337–353. 10.4208/jcm.1108-m3677Suche in Google Scholar
[18] C. Carstensen and F. Hellwig, Constants in discrete Poincaré and Friedrichs inequalities and discrete quasi-interpolation, Comput. Methods Appl. Math. 18 (2018), no. 3, 433–450. 10.1515/cmam-2017-0044Suche in Google Scholar
[19] C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods, Numer. Math. 107 (2007), no. 3, 473–502. 10.1007/s00211-007-0068-zSuche in Google Scholar
[20] C. Carstensen, J. Hu and A. Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal. 45 (2007), no. 1, 68–82. 10.1137/050628854Suche in Google Scholar
[21] C. Carstensen, G. Mallik and N. Nataraj, Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity, IMA J. Numer. Anal. 41 (2021), no. 1, 164–205. 10.1093/imanum/drz071Suche in Google Scholar
[22] C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates, preprint (2019), https://arxiv.org/abs/1908.08013; to appear in SIAM J. Numer. Anal. 10.1137/20M1335613Suche in Google Scholar
[23] C. Carstensen and N. Nataraj, Mathematics and computation of plates, in preparation (2021). Suche in Google Scholar
[24] C. Carstensen, D. Peterseim and M. Schedensack, Comparison results of finite element methods for the Poisson model problem, SIAM J. Numer. Anal. 50 (2012), no. 6, 2803–2823. 10.1137/110845707Suche in Google Scholar
[25] C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods, J. Comput. Math. 38 (2020), no. 1, 142–175. 10.4208/jcm.1908-m2018-0174Suche in Google Scholar
[26] C. Carstensen and S. Puttkammer, Direct guaranteed lower eigenvalue bounds with optimal a priori convergence rates for the bi-Laplacian, in preparation (2021). Suche in Google Scholar
[27] P. Ciarlet, C. F. Dunkl and S. A. Sauter, A family of Crouzeix–Raviart finite elements in 3D, Anal. Appl. (Singap.) 16 (2018), no. 5, 649–691. 10.1142/S0219530518500070Suche in Google Scholar
[28] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Suche in Google Scholar
[29] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. 3, 33–75. 10.1051/m2an/197307R300331Suche in Google Scholar
[30] W. Dahmen, B. Faermann, I. G. Graham, W. Hackbusch and S. A. Sauter, Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method, Math. Comp. 73 (2004), no. 247, 1107–1138. 10.1090/S0025-5718-03-01583-7Suche in Google Scholar
[31] E. Dari, R. Duran, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 4, 385–400. 10.1051/m2an/1996300403851Suche in Google Scholar
[32] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 1998. Suche in Google Scholar
[33] G. B. Folland, Introduction to Partial Differential Equations, 2nd ed., Princeton University, Princeton, 1995. Suche in Google Scholar
[34] D. Gallistl, Adaptive finite element computation of eigenvalues, Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2014. Suche in Google Scholar
[35] D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator, IMA J. Numer. Anal. 35 (2015), no. 4, 1779–1811. 10.1093/imanum/dru054Suche in Google Scholar
[36] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Class. Math., Springer, Berlin, 2001. 10.1007/978-3-642-61798-0Suche in Google Scholar
[37] P. Grisvard, Singularities in Boundary Value Problems, Rech. Math. Appl. 22, Masson, Paris, 1992. Suche in Google Scholar
[38] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2169–2189. 10.1090/S0025-5718-10-02360-4Suche in Google Scholar
[39] J. Hu and Z. Shi, A new a posteriori error estimate for the Morley element, Numer. Math. 112 (2009), no. 1, 25–40. 10.1007/s00211-008-0205-3Suche in Google Scholar
[40] J. Hu, Z. Shi and J. Xu, Convergence and optimality of the adaptive Morley element method, Numer. Math. 121 (2012), no. 4, 731–752. 10.1007/s00211-012-0445-0Suche in Google Scholar
[41]
J. Hu and Z.-C. Shi,
The best
[42] T. Kato, Estimation of iterated matrices, with application to the von Neumann condition, Numer. Math. 2 (1960), 22–29. 10.1007/BF01386205Suche in Google Scholar
[43] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss. 181, Springer, New York, 1972. 10.1007/978-3-642-65161-8Suche in Google Scholar
[44] L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aero. Quart. 19 (1968), 149–169. 10.1017/S0001925900004546Suche in Google Scholar
[45] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967. Suche in Google Scholar
[46] H. Rabus, A natural adaptive nonconforming FEM of quasi-optimal complexity, Comput. Methods Appl. Math. 10 (2010), no. 3, 315–325. 10.2478/cmam-2010-0018Suche in Google Scholar
[47] D. B. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms 42 (2006), no. 3–4, 309–323. 10.1007/s11075-006-9046-2Suche in Google Scholar
[48] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital. 3, Springer, Berlin, 2007. Suche in Google Scholar
[49] R. Vanselow, New results concerning the DWR method for some nonconforming FEM, Appl. Math. 57 (2012), no. 6, 551–568. 10.1007/s10492-012-0033-8Suche in Google Scholar
[50] A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. I—Abstract theory, SIAM J. Numer. Anal. 56 (2018), no. 3, 1621–1642. 10.1137/17M1116362Suche in Google Scholar
[51] A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. III—Discontinuous Galerkin and other interior penalty methods, SIAM J. Numer. Anal. 56 (2018), no. 5, 2871–2894. 10.1137/17M1151675Suche in Google Scholar
[52] A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. II—Overconsistency and classical nonconforming elements, SIAM J. Numer. Anal. 57 (2019), no. 1, 266–292. 10.1137/17M1151651Suche in Google Scholar
[53] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numer. Math. Sci. Comput., Oxford University, Oxford, 2013. 10.1093/acprof:oso/9780199679423.001.0001Suche in Google Scholar
[54] M. Wang and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numer. Math. 103 (2006), no. 1, 155–169. 10.1007/s00211-005-0662-xSuche in Google Scholar
[55]
M. Wang and J. Xu,
Minimal finite element spaces for
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reliable Methods of Mathematical Modeling
- Optimal Convergence Rates for Goal-Oriented FEM with Quadratic Goal Functional
- A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides
- A Space-Time Adaptive Algorithm to Illustrate the Lack of Collision of a Rigid Disk Falling in an Incompressible Fluid
- On the Energy Stable Approximation of Hamiltonian and Gradient Systems
- Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering
- A Locking-Free DPG Scheme for Timoshenko Beams
- Smoothed-Adaptive Perturbed Inverse Iteration for Elliptic Eigenvalue Problems
- Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods
- Quasi-Optimal and Pressure Robust Discretizations of the Stokes Equations by Moment- and Divergence-Preserving Operators
- Contractive Local Adaptive Smoothing Based on Dörfler’s Marking in A-Posteriori-Steered p-Robust Multigrid Solvers
- Uniform Preconditioners of Linear Complexity for Problems of Negative Order
- An Exact Realization of a Modified Hilbert Transformation for Space-Time Methods for Parabolic Evolution Equations
Artikel in diesem Heft
- Frontmatter
- Reliable Methods of Mathematical Modeling
- Optimal Convergence Rates for Goal-Oriented FEM with Quadratic Goal Functional
- A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides
- A Space-Time Adaptive Algorithm to Illustrate the Lack of Collision of a Rigid Disk Falling in an Incompressible Fluid
- On the Energy Stable Approximation of Hamiltonian and Gradient Systems
- Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering
- A Locking-Free DPG Scheme for Timoshenko Beams
- Smoothed-Adaptive Perturbed Inverse Iteration for Elliptic Eigenvalue Problems
- Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods
- Quasi-Optimal and Pressure Robust Discretizations of the Stokes Equations by Moment- and Divergence-Preserving Operators
- Contractive Local Adaptive Smoothing Based on Dörfler’s Marking in A-Posteriori-Steered p-Robust Multigrid Solvers
- Uniform Preconditioners of Linear Complexity for Problems of Negative Order
- An Exact Realization of a Modified Hilbert Transformation for Space-Time Methods for Parabolic Evolution Equations