Abstract
In this paper, we propose an
Funding source: China Postdoctoral Science Foundation
Award Identifier / Grant number: 2020M670117
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11871145
Award Identifier / Grant number: 11971016
Award Identifier / Grant number: 11871092
Award Identifier / Grant number: U1930402
Funding statement: The research of the first author is supported in part by China Postdoctoral Science Foundation (No. 2020M670117). The research of the second author is supported in part by the National Natural Science Foundation of China (NSFC 11871145 and NSFC 11971016). The research of the third author is supported in part by the National Natural Science Foundation of China (NSFC 11871092, NSFC 11926356, and NSAF U1930402).
A Trace Properties on the Vectorial Jacobi Basis
Let
be the trace on six faces.
It then holds that, for
It also holds for
for
and for
where
Proof
Note that
Then the results can be obtained by the properties of the generalized Jacobi polynomials immediately, and we omit the details of the proof. â
References
[1] F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations, Math. Comp. 68 (1999), no. 228, 1497â1520. 10.1090/S0025-5718-99-01086-8Suche in Google Scholar
[2] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005), 1â137. 10.1017/S0962492904000212Suche in Google Scholar
[3] S. C. Brenner, J. Cui and L.-y. Sung, Multigrid methods based on Hodge decomposition for a quad-curl problem, Comput. Methods Appl. Math. 19 (2019), no. 2, 215â232. 10.1515/cmam-2019-0011Suche in Google Scholar
[4] S. C. Brenner, J. Sun and L.-y. Sung, Hodge decomposition methods for a quad-curl problem on planar domains, J. Sci. Comput. 73 (2017), no. 2â3, 495â513. 10.1007/s10915-017-0449-0Suche in Google Scholar
[5] W. Cai, Computational Methods for Electromagnetic Phenomena, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139108157Suche in Google Scholar
[6] F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media, Inverse Probl. Imaging 1 (2007), no. 3, 443â456. 10.3934/ipi.2007.1.443Suche in Google Scholar
[7] G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer, Berlin, 2002. 10.1007/978-3-662-04823-8Suche in Google Scholar
[8] C. Greif and D. SchĂśtzau, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numer. Linear Algebra Appl. 14 (2007), no. 4, 281â297. 10.1002/nla.515Suche in Google Scholar
[9] B.-Y. Guo, J. Shen and L.-L. Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math. 59 (2009), no. 5, 1011â1028. 10.1016/j.apnum.2008.04.003Suche in Google Scholar
[10] B.-Y. Guo and T.-J. Wang, Composite Laguerre-Legendre spectral method for fourth-order exterior problems, J. Sci. Comput. 44 (2010), no. 3, 255â285. 10.1007/s10915-010-9367-0Suche in Google Scholar
[11] Q. Hong, J. Hu, S. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem, J. Comput. Math. 30 (2012), no. 6, 565â578. 10.4208/jcm.1206-m3572Suche in Google Scholar
[12] K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions, SIAM J. Sci. Comput. 42 (2020), no. 6, A3859âA3877. 10.1137/20M1333390Suche in Google Scholar
[13]
H. Li, W. Shan and Z. Zhang,
[14] J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwellâs Equations in Metamaterials, Springer Ser. Comput. Math. 43, Springer, Heidelberg, 2013. 10.1007/978-3-642-33789-5Suche in Google Scholar
[15] Y. Liu, J. Lee, X. Tian and Q. Liu, A spectral-element time-domain solution of Maxwellâs equations, Microwave Optical Technol. Lett. 48 (2006), no. 4, 673â680. 10.1002/mop.21440Suche in Google Scholar
[16] P. Monk and J. Sun, Finite element methods for Maxwellâs transmission eigenvalues, SIAM J. Sci. Comput. 34 (2012), no. 3, B247âB264. 10.1137/110839990Suche in Google Scholar
[17] L. Na, L. TobĂłn, Y. Zhao, Y. Tang and Q. Liu, Mixed spectral-element method for 3-D Maxwellâs eigenvalue problem, IEEE Trans. Microwave Theory Tech. 63 (2015), no. 2, 317â325. 10.1109/TMTT.2014.2387839Suche in Google Scholar
[18] S. Nicaise, Singularities of the quad curl problem, J. Differential Equations 264 (2018), no. 8, 5025â5069. 10.1016/j.jde.2017.12.032Suche in Google Scholar
[19] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 54 (1984), no. 3, 468â488. 10.1016/0021-9991(84)90128-1Suche in Google Scholar
[20] J. Shen, T. Tang and L. Wang, Spectral Methods, Springer, Berlin, 2011. 10.1007/978-3-540-71041-7Suche in Google Scholar
[21] J. Sun, A mixed FEM for the quad-curl eigenvalue problem, Numer. Math. 132 (2016), no. 1, 185â200. 10.1007/s00211-015-0708-7Suche in Google Scholar
[22] J. Sun and L. Xu, Computation of Maxwellâs transmission eigenvalues and its applications in inverse medium problems, Inverse Problems 29 (2013), no. 10, Article ID 104013. 10.1088/0266-5611/29/10/104013Suche in Google Scholar
[23] J. Sun, Q. Zhang and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem, BIT 59 (2019), no. 4, 1093â1114. 10.1007/s10543-019-00764-5Suche in Google Scholar
[24] J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems, Chapman and Hall/CRC, Boca Raton, 2016. 10.1201/9781315372419Suche in Google Scholar
[25]
Z. Sun, J. Cui, F. Gao and C. Wang,
Multigrid methods for a quad-curl problem based on
[26] G. SzegĂś, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, New York, 1939. Suche in Google Scholar
[27] C. Wang, Z. Sun and J. Cui, A new error analysis of a mixed finite element method for the quad-curl problem, Appl. Math. Comput. 349 (2019), 23â38. 10.1016/j.amc.2018.12.027Suche in Google Scholar
[28] L. Wang, Q. Zhang, J. Sun and Z. Zhang, A priori and a posteriori error estimates for the quad-curl eigenvalue problem, preprint (2020), https://arxiv.org/abs/2007.01330. 10.1051/m2an/2022027Suche in Google Scholar
[29] L. Wang, Q. Zhang and Z. Zhang, Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwellâs equations, J. Sci. Comput. 78 (2019), no. 2, 1207â1230. 10.1007/s10915-018-0805-8Suche in Google Scholar
[30]
Q. Zhang, L. Wang and Z. Zhang,
[31] Q. Zhang and Z. Zhang, Curl-curl conforming elements on tetrahedra, preprint (2020), https://arxiv.org/abs/2007.10421. Suche in Google Scholar
[32] S. Zhang, Mixed schemes for quad-curl equations, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 1, 147â161. 10.1051/m2an/2018005Suche in Google Scholar
[33] S. Zhang, Regular decomposition and a framework of order reduced methods for fourth order problems, Numer. Math. 138 (2018), no. 1, 241â271. 10.1007/s00211-017-0902-xSuche in Google Scholar
[34]
B. Zheng, Q. Hu and J. Xu,
A nonconforming finite element method for fourth order curl equations in
Š 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- SinoâGerman Computational and Applied Mathematics
- An Adaptive Finite Element Scheme for the HellingerâReissner Elasticity Mixed Eigenvalue Problem
- Adaptive Directional Compression of High-Frequency Helmholtz Boundary Element Matrices
- Hierarchical Argyris Finite Element Method for Adaptive and Multigrid Algorithms
- On the Threshold Condition for DĂśrfler Marking
- An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries
- Dimensionally Consistent Preconditioning for Saddle-Point Problems
- An Optimal Multilevel Method with One Smoothing Step for the Morley Element
- Kernel Embedding Based Variational Approach for Low-Dimensional Approximation of Dynamical Systems
- đŻ(curl 2)-Conforming Spectral Element Method for Quad-Curl Problems
- Defects in Active Nematics â Algorithms for Identification and Tracking
- Dual-Weighted Residual A Posteriori Error Estimates for a Penalized Phase-Field Slit Discontinuity Problem
- Fast Tensor Product Schwarz Smoothers for High-Order Discontinuous Galerkin Methods
- Error Analysis of an Unconditionally Energy Stable Local Discontinuous Galerkin Scheme for the CahnâHilliard Equation with Concentration-Dependent Mobility
Artikel in diesem Heft
- Frontmatter
- SinoâGerman Computational and Applied Mathematics
- An Adaptive Finite Element Scheme for the HellingerâReissner Elasticity Mixed Eigenvalue Problem
- Adaptive Directional Compression of High-Frequency Helmholtz Boundary Element Matrices
- Hierarchical Argyris Finite Element Method for Adaptive and Multigrid Algorithms
- On the Threshold Condition for DĂśrfler Marking
- An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries
- Dimensionally Consistent Preconditioning for Saddle-Point Problems
- An Optimal Multilevel Method with One Smoothing Step for the Morley Element
- Kernel Embedding Based Variational Approach for Low-Dimensional Approximation of Dynamical Systems
- đŻ(curl 2)-Conforming Spectral Element Method for Quad-Curl Problems
- Defects in Active Nematics â Algorithms for Identification and Tracking
- Dual-Weighted Residual A Posteriori Error Estimates for a Penalized Phase-Field Slit Discontinuity Problem
- Fast Tensor Product Schwarz Smoothers for High-Order Discontinuous Galerkin Methods
- Error Analysis of an Unconditionally Energy Stable Local Discontinuous Galerkin Scheme for the CahnâHilliard Equation with Concentration-Dependent Mobility