Startseite Mathematik An Adaptive Finite Element Scheme for the Hellinger–Reissner Elasticity Mixed Eigenvalue Problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Adaptive Finite Element Scheme for the Hellinger–Reissner Elasticity Mixed Eigenvalue Problem

  • Fleurianne Bertrand ORCID logo EMAIL logo , Daniele Boffi ORCID logo und Rui Ma ORCID logo
Veröffentlicht/Copyright: 2. Februar 2021

Abstract

In this paper, we study the approximation of eigenvalues arising from the mixed Hellinger–Reissner elasticity problem by using a simple finite element introduced recently by one of the authors. We prove that the method converges when a residual type error estimator is considered and that the estimator decays optimally with respect to the number of degrees of freedom. A postprocessing technique originally proposed in a different context is discussed and tested numerically.

MSC 2010: 65N25; 65N50; 74B05

Award Identifier / Grant number: BE 6511/1-1

Award Identifier / Grant number: STA 402/14-1

Funding statement: The first author gratefully acknowledges support by the Deutsche Forschungsgemeinschaft in the Priority Program SPP 1748 Simulation Techniques in Solid Mechanics, Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis, under the project number BE 6511/1-1. The second author is a member of the INdAM Research group GNCS, and his research is partially supported by IMATI/CNR and by PRIN/MIUR. The research of the third author was supported by the Alexander von Humboldt Foundation through the Humboldt Research Fellowship for Postdoctoral Researchers and in the project Approximation and reconstruction of stresses in the deformed configuration for hyperelastic material models (STA 402/14-1) by the DFG via the priority program 1748 Reliable Simulation Techniques in Solid Mechanics, Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis.

References

[1] D. Boffi, D. Gallistl, F. Gardini and L. Gastaldi, Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form, Math. Comp. 86 (2017), no. 307, 2213–2237. 10.1090/mcom/3212Suche in Google Scholar

[2] D. Boffi and L. Gastaldi, Adaptive finite element method for the Maxwell eigenvalue problem, SIAM J. Numer. Anal. 57 (2019), no. 1, 478–494. 10.1137/18M1179389Suche in Google Scholar

[3] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, A posteriori error estimates for Maxwell’s eigenvalue problem, J. Sci. Comput. 78 (2019), no. 2, 1250–1271. 10.1007/s10915-018-0808-5Suche in Google Scholar

[4] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. 10.1016/j.camwa.2013.12.003Suche in Google Scholar PubMed PubMed Central

[5] C. Carstensen, D. Gallistl and J. Gedicke, Residual-based a posteriori error analysis for symmetric mixed Arnold–Winther FEM, Numer. Math. 142 (2019), no. 2, 205–234. 10.1007/s00211-019-01029-7Suche in Google Scholar

[6] C. Carstensen, D. Gallistl and M. Schedensack, L 2 best approximation of the elastic stress in the Arnold–Winther FEM, IMA J. Numer. Anal. 36 (2016), no. 3, 1096–1119. 10.1093/imanum/drv051Suche in Google Scholar

[7] C. Carstensen and J. Hu, An extended Argyris finite element method with optimal standard adaptive and multigrid V-cycle algorithms, preprint (2019). Suche in Google Scholar

[8] C. Carstensen and H. Rabus, Axioms of adaptivity with separate marking for data resolution, SIAM J. Numer. Anal. 55 (2017), no. 6, 2644–2665. 10.1137/16M1068050Suche in Google Scholar

[9] L. Chen, J. Hu and X. Huang, Fast auxiliary space preconditioners for linear elasticity in mixed form, Math. Comp. 87 (2018), no. 312, 1601–1633. 10.1090/mcom/3285Suche in Google Scholar

[10] L. Chen, J. Hu, X. Huang and H. Man, Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems, Sci. China Math. 61 (2018), no. 6, 973–992. 10.1007/s11425-017-9181-2Suche in Google Scholar

[11] J. Douglas, Jr. and J. E. Roberts, Mixed finite element methods for second order elliptic problems, Mat. Apl. Comput. 1 (1982), no. 1, 91–103. Suche in Google Scholar

[12] R. G. Durán, L. Gastaldi and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci. 9 (1999), no. 8, 1165–1178. 10.1142/S021820259900052XSuche in Google Scholar

[13] D. Gallistl, An optimal adaptive FEM for eigenvalue clusters, Numer. Math. 130 (2015), no. 3, 467–496. 10.1007/s00211-014-0671-8Suche in Google Scholar

[14] J. Gedicke and A. Khan, Arnold-Winther mixed finite elements for Stokes eigenvalue problems, SIAM J. Sci. Comput. 40 (2018), no. 5, A3449–A3469. 10.1137/17M1162032Suche in Google Scholar

[15] B. Gong, J. Han, J. Sun and Z. Zhang, A shifted-inverse adaptive multigrid method for the elastic eigenvalue problem, Commun. Comput. Phys. 27 (2020), no. 1, 251–273. 10.4208/cicp.OA-2018-0293Suche in Google Scholar

[16] J. Hu, Finite element approximations of symmetric tensors on simplicial grids in R n : The higher order case, J. Comput. Math. 33 (2015), no. 3, 283–296. 10.4208/jcm.1412-m2014-0071Suche in Google Scholar

[17] J. Hu and R. Ma, Partial relaxation of C 0 vertex continuity of stresses of conforming mixed finite elements for the elasticity problem, Comput. Methods Appl. Math 21 (2021), no. 1, 89–108. 10.1515/cmam-2020-0003Suche in Google Scholar

[18] J. Hu and S. Zhang, A family of conforming mixed finite elements for linear elasticity on triangular grids, preprint (2015), https://arxiv.org/abs/1406.7457v2. 10.1007/s11425-014-4953-5Suche in Google Scholar

Received: 2020-03-18
Revised: 2020-11-22
Accepted: 2020-12-03
Published Online: 2021-02-02
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2020-0034/html
Button zum nach oben scrollen