Startseite Ensemble Algorithm for Parametrized Flow Problems with Energy Stable Open Boundary Conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ensemble Algorithm for Parametrized Flow Problems with Energy Stable Open Boundary Conditions

  • Aziz Takhirov ORCID logo EMAIL logo und Jiajia Waters
Veröffentlicht/Copyright: 15. Oktober 2019

Abstract

We propose novel ensemble calculation methods for Navier–Stokes equations subject to various initial conditions, forcing terms and viscosity coefficients. We establish the stability of the schemes under a CFL condition involving velocity fluctuations. Similar to related works, the schemes require solution of a single system with multiple right-hand sides. Moreover, we extend the ensemble calculation method to problems with open boundary conditions, with provable energy stability.

MSC 2010: 65M60; 76D05

Award Identifier / Grant number: 219949

Funding statement: The first author was supported by the National Science and Engineering Research Council of Canada, Discovery grant 219949.

References

[1] D. N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, Advances in Computer Methods for Partial Differential Equations VII, International Association for Mathematics and Computers in Simulation (IMACS), New Brunswick (1992), 28–34. Suche in Google Scholar

[2] C. Bertoglio, A. Caiazzo, Y. Bazilevs, M. Braack, M. Esmaily, V. Gravemeier, A. L. Marsden, O. Pironneau, I. E. Vignon-Clementel and W. A. Wall, Benchmark problems for numerical treatment of backflow at open boundaries, Int. J. Numer. Methods Biomed. Eng. 34 (2017), no. 2, Paper No. e2918. 10.1002/cnm.2918Suche in Google Scholar PubMed

[3] J. Burkardt, M. Gunzburger and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier–Stokes flows, Comput. Methods Appl. Mech. Engrg. 196 (2006), no. 1–3, 337–355. 10.1016/j.cma.2006.04.004Suche in Google Scholar

[4] S. Charnyi, T. Heister, M. A. Olshanskii and L. G. Rebholz, On conservation laws of Navier–Stokes Galerkin discretizations, J. Comput. Phys. 337 (2017), 289–308. 10.1016/j.jcp.2017.02.039Suche in Google Scholar

[5] J.-P. Chollet, P. R. Voke and L. Kleiser, Direct and Large-Eddy Simulation. II, ERCOFTAC Ser. 5, Kluwer Academic Publishers, Dordrecht, (1997). 10.1007/978-94-011-5624-0Suche in Google Scholar

[6] H. M. Christensen, I. M. Moroz and T. N. Palmer, Stochastic and perturbed parameter representations of model uncertainty in convection parameterization, J. Atmospheric Sci. 72 (2015), no. 6, 2525–2544. 10.1175/JAS-D-14-0250.1Suche in Google Scholar

[7] S. Dong, A convective-like energy-stable open boundary condition for simulations of incompressible flows, J. Comput. Phys. 302 (2015), 300–328. 10.1016/j.jcp.2015.09.017Suche in Google Scholar

[8] S. Dong and J. Shen, A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows, J. Comput. Phys. 291 (2015), 254–278. 10.1016/j.jcp.2015.03.012Suche in Google Scholar

[9] M. Gunzburger, N. Jiang and Z. Wang, An efficient algorithm for simulating ensembles of parameterized flow problems, IMA J. Numer. Anal. 39 (2019), no. 3, 1180–1205. 10.1093/imanum/dry029Suche in Google Scholar

[10] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), no. 3–4, 251–265. 10.1515/jnum-2012-0013Suche in Google Scholar

[11] M. Heyouni and A. Essai, Matrix Krylov subspace methods for linear systems with multiple right-hand sides, Numer. Algorithms 40 (2005), no. 2, 137–156. 10.1007/s11075-005-1526-2Suche in Google Scholar

[12] J. G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations, Int. J. Numer. Meth. Fluids 22 (1996), no. 5, 325–352. 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-YSuche in Google Scholar

[13] C. Howard, S. Gupta, A. Abbas, T. A. G. Langrish and D. F. Fletcher, Proper orthogonal decomposition (pod) analysis of cfd data for flow in an axisymmetric sudden expansion, Chem. Eng. Rese. Design 123 (2017), 333–346. 10.1016/j.cherd.2017.05.017Suche in Google Scholar

[14] K. Jbilou, Smoothing iterative block methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math. 107 (1999), no. 1, 97–109. 10.1016/S0377-0427(99)00083-7Suche in Google Scholar

[15] N. Jiang, A higher order ensemble simulation algorithm for fluid flows, J. Sci. Comput. 64 (2015), no. 1, 264–288. 10.1007/s10915-014-9932-zSuche in Google Scholar

[16] N. Jiang M. Gunzburger and Z. Wang, A second-order time-stepping scheme for simulating ensembles of parameterized flow problems, Comput. Methods Appl. Math. 19 (2019), 681–701. 10.1515/cmam-2017-0051Suche in Google Scholar

[17] N. Jiang and W. Layton, An algorithm for fast calculation of flow ensembles, Int. J. Uncertain. Quantif. 4 (2014), no. 4, 273–301. 10.1615/Int.J.UncertaintyQuantification.2014007691Suche in Google Scholar

[18] N. Jiang and W. Layton, Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion, Numer. Methods Partial Differential Equations 31 (2015), no. 3, 630–651. 10.1002/num.21908Suche in Google Scholar

[19] N. Jiang, M. Mohebujjaman, L. G. Rebholz and C. Trenchea, An optimally accurate discrete regularization for second order timestepping methods for Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 310 (2016), 388–405. 10.1016/j.cma.2016.07.017Suche in Google Scholar

[20] V. John, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int. J. Numer. Meth. Fluids 44 (2004), 777–788. 10.1002/fld.679Suche in Google Scholar

[21] J. Liu, Open and traction boundary conditions for the incompressible Navier–Stokes equations, J. Comput. Phys. 228 (2009), no. 19, 7250–7267. 10.1016/j.jcp.2009.06.021Suche in Google Scholar

[22] F. Pahlevani, Sensitivity computations of eddy viscosity models with an application in drag computation, Internat. J. Numer. Methods Fluids 52 (2006), no. 4, 381–392. 10.1002/fld.1168Suche in Google Scholar

[23] A. Quarteroni, Numerical Models for Differential Problems, MS&A. Model. Simul. Appl. 2, Springer, Milan, 2009. 10.1007/978-88-470-1071-0Suche in Google Scholar

[24] P. Sagaut and T. H. Lê, Some investigations on the sensitivity of large eddy simulation, Direct and Large-Eddy Simulation II, Springer Netherlands, Dordrecht (1997), 81–92. 10.1007/978-94-011-5624-0_8Suche in Google Scholar

[25] R. L. Sani and P. M. Gresho, Résumé and remarks on the open boundary condition minisymposium, Int. J. Numer. Meth. Fluids 18 (1994), no. 10, 983–1008. 10.1002/fld.1650181006Suche in Google Scholar

[26] M. Schäfer and S. Turek, The benchmark problem ‘flow around a cylinder’ flow simulation with high performance computers II, Low Simulation with High-Performance Computers. II, Notes on Numerical Fluid Mechanics 52, Friedr. Vieweg & Sohn, Braunschweig (1996), 547–566. 10.1007/978-3-322-89849-4_39Suche in Google Scholar

[27] A. Takhirov and A. Lozovskiy, Computationally efficient modular nonlinear filter stabilization for high Reynolds number flows, Adv. Comput. Math. 44 (2018), no. 1, 295–325. 10.1007/s10444-017-9544-xSuche in Google Scholar

[28] A. Takhirov, M. Neda and J. Waters, Time relaxation algorithm for flow ensembles, Numer. Methods Partial Differential Equations 32 (2016), no. 3, 757–777. 10.1002/num.22024Suche in Google Scholar

[29] Z. Toth and E. Kalnay, Ensemble forecasting at ncep and the breeding method, Monthly Weather Rev. 125 (1997), no. 12, 3297–3319. 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2Suche in Google Scholar

[30] S. Walton, O. Hassan and K. Morgan, Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions, Appl. Math. Model. 37 (2013), no. 20–21, 8930–8945. 10.1016/j.apm.2013.04.025Suche in Google Scholar

Received: 2018-08-08
Revised: 2019-06-24
Accepted: 2019-09-25
Published Online: 2019-10-15
Published in Print: 2020-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2018-0203/html
Button zum nach oben scrollen