Startseite An Optimal Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Optimal Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems

  • Xiao Zhang , Xiaoping Xie und Shiquan Zhang EMAIL logo
Veröffentlicht/Copyright: 20. März 2018

Abstract

The embedded discontinuous Galerkin (EDG) method by Cockburn, Gopalakrishnan and Lazarov [B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems, SIAM J. Numer. Anal. 47 2009, 2, 1319–1365] is obtained from the hybridizable discontinuous Galerkin method by changing the space of the Lagrangian multiplier from discontinuous functions to continuous ones, and adopts piecewise polynomials of equal degrees on simplex meshes for all variables. In this paper, we analyze a new EDG method for second-order elliptic problems on polygonal/polyhedral meshes. By using piecewise polynomials of degrees k+1, k+1, k (k0) to approximate the potential, numerical trace and flux, respectively, the new method is shown to yield optimal convergence rates for both the potential and flux approximations. Numerical experiments are provided to confirm the theoretical results.

Award Identifier / Grant number: 11771312

Award Identifier / Grant number: 11401407

Award Identifier / Grant number: 91430105

Funding statement: This work was supported in part by National Natural Science Foundation of China (11771312, 11401407) and Major Research Plan of National Natural Science Foundation of China (91430105).

References

[1] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. 10.1137/S0036142901384162Suche in Google Scholar

[2] F. Brezzi, J. Douglas, Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. 10.1007/BF01389710Suche in Google Scholar

[3] B. Cockburn and J. Gopalakrishnan, A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 1, 283–301. 10.1137/S0036142902417893Suche in Google Scholar

[4] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319–1365. 10.1137/070706616Suche in Google Scholar

[5] B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods, Math. Comp. 79 (2010), no. 271, 1351–1367. 10.1090/S0025-5718-10-02334-3Suche in Google Scholar

[6] B. Cockburn, J. Gopalakrishnan and H. Wang, Locally conservative fluxes for the continuous Galerkin method, SIAM J. Numer. Anal. 45 (2007), no. 4, 1742–1776. 10.1137/060666305Suche in Google Scholar

[7] B. Cockburn, J. Guzmán, S.-C. Soon and H. K. Stolarski, An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 4, 2686–2707. 10.1137/080726914Suche in Google Scholar

[8] B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems, Math. Comp. 81 (2012), no. 279, 1327–1353. 10.1090/S0025-5718-2011-02550-0Suche in Google Scholar

[9] P. Fernandez, N. C. Nguyen and X. Roca, Implicit large-eddy simulation of compressible flows using the interior embedded discontinuous Galerkin method, AIAA Sci. Tech. Forum (2016), https://doi.org/10.2514/6.2016-1332. 10.2514/6.2016-1332Suche in Google Scholar

[10] C. Gang and X. Xie, Robust weak Galerkin finite element methods for linear elasticity with continuous displacement trace approximation, preprint (2017), https://arxiv.org/abs/1710.07905. Suche in Google Scholar

[11] S. Güzey, B. Cockburn and H. K. Stolarski, The embedded discontinuous Galerkin method: application to linear shell problems, Internat. J. Numer. Methods Engrg. 70 (2007), no. 7, 757–790. 10.1002/nme.1893Suche in Google Scholar

[12] B. Li and X. Xie, Analysis of a family of HDG methods for second order elliptic problems, J. Comput. Appl. Math. 307 (2016), 37–51. 10.1016/j.cam.2016.04.027Suche in Google Scholar

[13] N. C. Nguyen, J. Peraire and B. Cockburn, An embedded discontinuous Galerkin method for the compressible Euler and Navier–Stokes Equations, AIAA Sci. Tech. Forum (2013), https://doi.org/10.2514/6.2011-3228. 10.2514/6.2011-3228Suche in Google Scholar

[14] N. C. Nguyen, J. Peraire and B. Cockburn, A class of embedded discontinuous Galerkin methods for computational fluid dynamics, J. Comput. Phys. 302 (2015), 674–692. 10.1016/j.jcp.2015.09.024Suche in Google Scholar

[15] Z. Shi and M. Wang, Finite Element Methods, Science Press, Beijing, 2013. Suche in Google Scholar

[16] G. Vacca, Advancements in mimetic and virtual element methods, Ph.D. thesis, Università Degli Studi Di Bar, 2016. Suche in Google Scholar

Received: 2017-11-09
Revised: 2018-02-05
Accepted: 2018-02-27
Published Online: 2018-03-20
Published in Print: 2019-10-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2018-0007/html
Button zum nach oben scrollen