Startseite Medizin Length measurement of the eye using a swept-source interferometer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Length measurement of the eye using a swept-source interferometer

  • Haroun Al-Mohamedi EMAIL logo , Andreas Prinz , Guido Mieskes , Theo Oltrup und Thomas Bende
Veröffentlicht/Copyright: 4. Oktober 2013

Abstract

In this article, a swept-source setup based on a semiconductor optical amplifier at the central wavelength of 1050 nm for measurements of the axial length inside the eye is presented. The large coherence length is achieved using a tunable optical filter, consisting of a reflective diffraction grating, two Littrow prisms, and a scanner. It was possible to achieve a coherence length of 40 mm, which allowed interference measurements in this range to be made. Measurements of the biomedical data of a human model eye are presented. To realize faster measurements, the data acquisition must be increased to more than 2 MS/s. In further studies, the usage of a field-programmable gate array, to achieve faster measurements, will be considered.


Corresponding author: Haroun Al-Mohamedi, Stiftungslabor für Grundlagenforschung, Universitäts-Augenklinik Tübingen, D-72074 Tuebingen, Deutschland, Germany, Phone: +49-7071-9755061, Fax: +49-7071-9755066, E-mail:

The funds for this work were provided by the Dr. Ernst and Wilma Mueller Foundation and the Henning Zuegel Foundation. At this point, we would like to thank them for their support.

References

[1] Chong C. Large coherence length swept source for axial length measurement of the eye. Appl Opt 2009; 48(10): 144–150.10.1364/AO.48.00D144Suche in Google Scholar PubMed

[2] Demtroder W. Laserspektroskopie. Springer-Verlag Berlin Heidelberg 2007: 68–92.Suche in Google Scholar

[3] Drexler W, Fujimoto JG. Optical coherence tomography. Springer-Verlag Berlin Heidelberg 2008: 379–404.10.1007/978-3-540-77550-8Suche in Google Scholar

[4] Fercher AF. Optical coherence tomography. J Biomed Opt 1996; 1(2): 157–173.10.1117/12.231361Suche in Google Scholar PubMed

[5] Fercher AF. Optical coherence tomography – development, principles, applications. Zeitschrift für Medizinische Physik. 2010; 20(4): 251–276.10.1016/j.zemedi.2009.11.002Suche in Google Scholar PubMed

[6] Hee MR. In: Bouma BE, editor. Handbook of optical coherence tomography.Suche in Google Scholar

[7] Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. Optical coherence microscopy in scattering media. Opt Lett 1994; 19(8): 590–592.10.1364/OL.19.000590Suche in Google Scholar

[8] Izatt JA, Choma MA. Theory of optical coherence tomography. In: Drexler W, Fujimoto JG, editors. Optical coherence tomography technology and applications. Springer-Verlag Berlin Heidelberg 2008: 47–72.10.1007/978-3-540-77550-8_2Suche in Google Scholar

[9] Jhanji V, Yang B, Yu M, Ye C, Leung CK. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes. Clin Exp Ophthalmol 2013. doi: 10.1111/ceo.12113 (in press).10.1111/ceo.12113Suche in Google Scholar PubMed

[10] Marschall S, Klein T, Wieser W, et al. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier. Opt Exp 2010; 18(15): 15820–15831.10.1364/OE.18.015820Suche in Google Scholar PubMed

Received: 2013-2-11
Accepted: 2013-8-30
Published Online: 2013-10-04
Published in Print: 2014-02-01

©2014 by Walter de Gruyter Berlin Boston

Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/bmt-2013-0022/html
Button zum nach oben scrollen