Startseite A Height-Based Multidimensional Extension of the Lorenz Preorder for Integer-Valued Distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Height-Based Multidimensional Extension of the Lorenz Preorder for Integer-Valued Distributions

  • Ernesto Savaglio ORCID logo EMAIL logo und Stefano Vannucci
Veröffentlicht/Copyright: 7. März 2017

Abstract

We study multidimensional inequality on integers. In such a setting, a Lorenz-like preorder and a suitably adapted version of the Muirhead-Pigou-Dalton transfers are defined, and a counterpart of some classic results on inequality measurement is established in this multivariate setting.

JEL Classification: D31; D63; I31

Acknowledgments

We thank two anonymous Referees for their most useful criticisms and comments.

References

Chakravarty, S., and C. Zoli. 2012. “Stochastic Dominance Relations for Integer Variables.” Journal of Economic Theory 147: 1331–1341.10.1007/978-981-13-3432-0_13Suche in Google Scholar

Dardanoni, V. 1995. “On Multidimensional Inequality Measurement.” In Income Distribution, Social Welfare, Inequality, and Poverty Vol. 6 of Research on Economic Inequality., edited by C. Dagum, and A. Lemmi, 201–207. Stanford, CT: JAI Press.Suche in Google Scholar

Diez, H., M. C. Lasso de la Vega, A. de Sarachu, and A. M. Urrutia. Topics. 2007. “A Consistent Multidimensional Generalization of the Pigou-Dalton Transfer Principle: An Analysis.” The B.E. Journal of Theoretical Economics 7 (1).10.2202/1935-1704.1408Suche in Google Scholar

Fishburn, P., and I. Lavalle. 1995. “Stochastic Dominance on Unidimensional Grids.” Mathematics of Operations Research 20: 513–525.10.1287/moor.20.3.513Suche in Google Scholar

Fleurbaey, M., and A. Trannoy. 2003. “The Impossibility of A Paretian Egalitarian.” Social Choice and Welfare 21: 243–263.10.1007/s00355-003-0258-2Suche in Google Scholar

Gajdos, T., and J. A. Weymark. 2005. “Multidimensional Generalized Gini Indices.” Economic Theory 26: 471–496.10.1007/s00199-004-0529-xSuche in Google Scholar

Haskins, S., and S. Gudder. 1972. “Height on Posets and Graphs.” Discrete Mathematics 2: 357–382.10.1016/0012-365X(72)90014-3Suche in Google Scholar

Karlin, S. 1968. Total Positivity, Vol. 1. Stanford: University Press.Suche in Google Scholar

Kolm, S.C. 1977. “Multidimensional Egalitarianisms.” Quarterly Journal of Economics 91: 1–13.10.2307/1883135Suche in Google Scholar

Koshevoy, G. 1995. “Multivariate Lorenz Majorization.” Social Choice and Welfare 12: 93–102.10.1007/BF00182196Suche in Google Scholar

Koshevoy, G. 1998. “The Lorenz Zonotope and Multivariate Majorizations.” Social Choice and Welfare 15: 1–14.10.1007/s003550050087Suche in Google Scholar

Koshevoy, G., and K. Mosler. 1996. “The Lorenz Zonoid of a Multivariate Distribution.” Journal of the American Statistical Association 91: 873–882.10.1080/01621459.1996.10476955Suche in Google Scholar

Maasoumi, E. 1986. “The Measurement and Decomposition of Multidimensional Inequality.” Econometrica 54: 991–997.10.2307/1912849Suche in Google Scholar

Marshall, A., I. Olkin, and B. Arnold. 2011. Inequalities: Theory of Majorization and its Applications., 2nd. New York: Springer.10.1007/978-0-387-68276-1Suche in Google Scholar

Muirhead, R.F. 1903. “Some Methods Applicable to Identities and Inequalities of Symmetric Algebraic Functions of n Letters.” Proceeding Edinburgh Mathematical Society 21: 144–157.10.1017/S001309150003460XSuche in Google Scholar

Pattanaik, P., and Y. Xu. 1990. “On Ranking Opportunity Sets in Terms of Freedom of Choice.” Recherches Économiques de Louvain 56: 383–390.10.1017/S0770451800043955Suche in Google Scholar

Savaglio, E. 2006. “Three Approaches to the Analysis of Multidimensional Inequality.” In Inequality and Economic Integration., edited by F. Farina, and E. Savaglio. London: Routledge.Suche in Google Scholar

Savaglio, E., and S. Vannucci. 2007. “Filtral Preorders and Opportunity Inequality.” Journal of Economic Theory 132: 474–492.10.1016/j.jet.2005.07.012Suche in Google Scholar

Tsui, K. Y. 1995. “Multidimensional Generalizations of the Relative and Absolute Inequality Indices: The Atkinson-Sen-Kolm Approach.” Journal of Economic Theory 67: 251–265.10.1006/jeth.1995.1073Suche in Google Scholar

Vannucci, S. 2013. “A Characterization of Height-Based Extensions of Principal Filtral Opportunity Rankings.” Cuadernos de Economía 61: 803–815.10.2139/ssrn.480841Suche in Google Scholar

Published Online: 2017-3-7

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bejte-2016-0113/html
Button zum nach oben scrollen