Startseite Bydgostian hand exoskeleton – own concept and the biomedical factors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bydgostian hand exoskeleton – own concept and the biomedical factors

  • Jakub Kopowski , Dariusz Mikołajewski EMAIL logo , Marek Macko und Izabela Rojek
Veröffentlicht/Copyright: 22. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An exoskeleton is defined as a distinctive kind of robot to be worn as an overall or frame, effectively supporting, or in some cases substituting for, the user’s own movements. In this paper a new three-dimensional (3D) printed bydgostian hand exoskeleton is introduced and biomedically characterized. The proposed concept is promising, and the described approach combining biomechanical factors and 3D modeling driven by detailed hand exoskeleton patterns may constitute a key future method of ergonomic hand exoskeleton design and validation prior to manufacturing. Despite the aforementioned approach, we should be aware that hand exoskeleton constitutes hand support and rehabilitation robot system developing with the user; thus, certain coordination and continuity of the “hardware” part of the whole system and the training paradigm are essential for therapy efficacy.

  1. Ethical Approval: The conducted research is not related to either human or animal use.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: None declared.

  4. Employment or leadership: None declared.

  5. Honorarium: None declared.

  6. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

  7. Conflict of interests: The authors declare no conflict of interest.

References

[1] Burns MK, Van Orden K, Patel V, Vinjamuri R. Towards a wearable hand exoskeleton with embedded synergies. Conf Proc IEEE Eng Med Biol Soc 2017;2017:213–6.10.1109/EMBC.2017.8036800Suche in Google Scholar PubMed

[2] Kim S, Lee J, Park W, Bae J. Quantitative evaluation of hand functions using a wearable hand exoskeleton system. IEEE Int Conf Rehabil Robot 2017;2017:1488–93.10.1109/ICORR.2017.8009458Suche in Google Scholar PubMed

[3] Zhang F, Fu Y, Zhang Q. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Biomed Mater Eng 2015;26(Suppl 1):S665–72.10.3233/BME-151358Suche in Google Scholar PubMed

[4] Hansen C, Gosselin F, Ben Mansour K, Devos P, Marin F. Design-validation of a hand exoskeleton using musculoskeletal modeling. Appl Ergon 2018;68:283–8.10.1016/j.apergo.2017.11.015Suche in Google Scholar PubMed

[5] Mikołajewska E. Terapia ręki. Diagnoza i terapia. Warszawa: Soyer, 2016.Suche in Google Scholar

[6] Mikołajewska E. Terapia ręki – warsztat. Biomechaniczna analiza zabaw. Bydgoszcz: FEM, 2017.Suche in Google Scholar

[7] Chow YK, Masiak J, Mikołajewska E, Mikołajewski D, Wójcik GM, Wallace B, et al. Limbic brain structures and burnout – a systematic review. Adv Med Sci 2018;63:192–8.10.1016/j.advms.2017.11.004Suche in Google Scholar PubMed

[8] Wójcik GM, Masiak J, Kawiak A, Kwaśniewicz L, Schneider P, Polak N, et al. Mapping the human brain in frequency band analysis of brain cortex electroencephalographic activity for selected psychiatric disorders. Front Neuroinform 2018;12:73.10.3389/fninf.2018.00073Suche in Google Scholar PubMed PubMed Central

[9] Wójcik GM, Masiak J, Kawiak A, Kwaśniewicz L, Schneider P, Polak N, et al. New Protocol for quantitative analysis of brain cortex electroencephalographic activity in patients with psychiatric disorders. Front Neuroinform 2018;12:27.10.3389/fninf.2018.00027Suche in Google Scholar PubMed PubMed Central

[10] Kopowski J, Rojek I, Mikołajewski D, Macko M. 3D printed hand exoskeleton – own concept. In: Trojanowska J, Ciszak O, Machado JM, Pavlenko I, editors. Advances in manufacturing II – vol. 1. – Solutions for industry 4.0. Series: Lecture Notes in Mechanical Engineering. Heidelberg, New York: Springer, 2019.10.1007/978-3-030-18715-6_25Suche in Google Scholar

[11] Hill D, Holloway CS, Morgado Ramirez DZ, Smitham P, Pappas Y. What are user perspectives of exoskeleton technology? A literature review. Int J Technol Assess Health Care 2017;33:160–7.10.1017/S0266462317000460Suche in Google Scholar PubMed

[12] Wolff J, Parker C, Borisoff J, Mortenson WB, Mattie J. A survey of stakeholder perspectives on exoskeleton technology. J Neuroeng Rehabil 2014;11:169.10.1186/1743-0003-11-169Suche in Google Scholar PubMed PubMed Central

[13] Ngeo J, Tamei T, Shibata T, Orlando MF, Behera L, Saxena A, et al. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals. Conf Proc IEEE Eng Med Biol Soc 2013;2013:338–41.10.1109/EMBC.2013.6609506Suche in Google Scholar PubMed

[14] Bos RA, Haarman CJ, Stortelder T, Nizamis K, Herder JL, Stienen AH, et al. A structured overview of trends and technologies used in dynamic hand orthoses. J Neuroeng Rehabil 2016;13:62.10.1186/s12984-016-0168-zSuche in Google Scholar PubMed PubMed Central

[15] Yue Z, Zhang X, Wang J. Hand rehabilitation robotics on poststroke motor recovery. Behav Neurol 2017;2017:3908135.10.1155/2017/3908135Suche in Google Scholar PubMed PubMed Central

[16] Rose CG, Kann CK, Deshpande AD, O’Malley MK. Estimating anatomical wrist joint motion with a robotic exoskeleton. IEEE Int Conf Rehabil Robot 2017;2017:1437–42.10.1109/ICORR.2017.8009450Suche in Google Scholar PubMed

[17] Proietti T, Guigon E, Roby-Brami A, Jarrassé N. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. J Neuroeng Rehabil 2017;14:55.10.1186/s12984-017-0254-xSuche in Google Scholar PubMed PubMed Central

[18] Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 2005;38:981–92.10.1016/j.jbiomech.2004.05.042Suche in Google Scholar PubMed

[19] Chan SS, Moran DW. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces. J Neural Eng 2006;3:327–37.10.1088/1741-2560/3/4/010Suche in Google Scholar PubMed

[20] Garner BA, Pandy MG. Musculoskeletal model of the upper limb based on the visible human male dataset. Comput Methods Biomech Biomed Engin 2001;4:93–126.10.1080/10255840008908000Suche in Google Scholar PubMed

[21] Li J, Zheng R, Zhang Y, Yao J. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. IEEE Int Conf Rehabil Robot 2011;2011:5975387.Suche in Google Scholar

[22] Wang J, Li J, Zhang Y, Wang S. Design of an exoskeleton for index finger rehabilitation. Conf Proc IEEE Eng Med Biol Soc 2009;2009:5957–60.10.1109/IEMBS.2009.5334779Suche in Google Scholar PubMed

[23] Krüger M, Eggert T, Straube A. Joint angle variability in the time course of reaching movements. Clin Neurophysiol 2011;122:759–66.10.1016/j.clinph.2010.10.003Suche in Google Scholar PubMed

[24] Kulig K, Andrews JG, Hay JG. Human strength curves. Exerc Sport Sci Rev 1984;12:417–66.10.1249/00003677-198401000-00014Suche in Google Scholar

[25] Kapandji AI. The clinical evaluation of the upper limb joints’ function: back to Hippocrates. Hand Clin 2003;19:379–86.10.1016/S0749-0712(03)00029-5Suche in Google Scholar

Received: 2019-01-28
Accepted: 2019-02-25
Published Online: 2019-03-22

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bams-2019-0003/html
Button zum nach oben scrollen