Startseite A combined guidance and control concept for autonomous ferries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A combined guidance and control concept for autonomous ferries

  • Simon Helling

    Simon Helling is a doctoral researcher with the Automation and Control Group at the Faculty of Engineering of Kiel University, Germany. His research focuses on optimal and model predictive control of autonomous marine surface vessels. Furthermore, his research interests include state and disturbance estimation as well as numerical optimization methods.

    EMAIL logo
    , Max Lutz

    Max Lutz is a doctoral researcher with the Automation and Control Group at the Faculty of Engineering of Kiel University, Germany. His research interests are the development and application of optimal control and model predictive control schemes with a special focus on trajectory planning for highly automated and autonomous marine surface vessels.

    und Thomas Meurer

    Thomas Meurer is Full Professor and head of the Automation and Control Group at the Faculty of Engineering of Kiel University, Germany. His research interests include control, optimization, and state estimation for linear and nonlinear finite-dimensional and distributed parameter systems and their application in manufacturing and production processes, robotics, multi-agent systems, maritime systems, adaptive mechatronic structures, and process systems engineering.

Veröffentlicht/Copyright: 12. Mai 2022

Abstract

Autonomous ferry operation in harbor and coastal areas is especially challenging due to the tendency to impose a high traffic density, prohibited areas, and a wide variety of different traffic participants to the automation task. To this end, we propose a concept for automated guidance and control of harbor ferry fleet operation. Subsequently, we differentiate guidance into a central, on-land scheduling unit and an on-ship trajectory planning unit that generates a set of waypoints and corresponding desired speeds by means of a flatness-based optimal control problem. Moreover, static obstacles are taken into account by means of a dual approach and the trajectory planning is linked to the control module realized as a path following model predictive control autopilot, which also handles dynamic obstacles.

Zusammenfassung

Die Realisierung autonomer Personenfähren in Hafen- und Küstengebieten stellt ein besonders herausforderndes Problem dar, was nicht zuletzt daran liegt, dass in diesen Gebieten ein erhöhtes Verkehrsaufkommen, Sperrbereiche und eine Vielzahl an verschiedenen Verkehrsteilnehmern anzutreffen sind. Um dieses Problem zu lösen, wird ein Konzept zur automatisierten Schiffsführung und -regelung von Personenfähren präsentiert. Dabei wird die Schiffsführung in eine landgebundene Fahrplaneinheit und in eine schiffsgebundene Trajektorienplanungseinheit unterteilt, wobei letztere Wegpunkte und dazugehörige Sollgeschwindigkeiten mittels eines flachheitsbasierten Optimalsteueurungsproblems generiert. Außerdem werden dabei statische Hindernisse mittels eines dualen Ansatzes berücksichtigt. Die Regelung erfolgt durch einen modellprädiktiven Ansatz, der zudem dynamische Hindernisse einbezieht.

About the authors

Simon Helling

Simon Helling is a doctoral researcher with the Automation and Control Group at the Faculty of Engineering of Kiel University, Germany. His research focuses on optimal and model predictive control of autonomous marine surface vessels. Furthermore, his research interests include state and disturbance estimation as well as numerical optimization methods.

Max Lutz

Max Lutz is a doctoral researcher with the Automation and Control Group at the Faculty of Engineering of Kiel University, Germany. His research interests are the development and application of optimal control and model predictive control schemes with a special focus on trajectory planning for highly automated and autonomous marine surface vessels.

Thomas Meurer

Thomas Meurer is Full Professor and head of the Automation and Control Group at the Faculty of Engineering of Kiel University, Germany. His research interests include control, optimization, and state estimation for linear and nonlinear finite-dimensional and distributed parameter systems and their application in manufacturing and production processes, robotics, multi-agent systems, maritime systems, adaptive mechatronic structures, and process systems engineering.

References

1. Agrawal, S. K. and H. Sira-Ramirez. 2004. Differentially Flat Systems. Taylor & Francis.10.1201/9781482276640Suche in Google Scholar

2. Burger, M., B. De Schutter and J. Hellendoorn. 2012. An Improved Method for Solving Micro-Ferry Scheduling Problems. In: Symposium on Quantitative Methods in Transportation Systems.10.1109/ACC.2012.6315112Suche in Google Scholar

3. Burger, M., B. De Schutter and J. Hellendoorn. 2012. Micro-Ferry Scheduling Problem with Time Windows. In: American Control Conference (ACC). IEEE, pp. 3998–4003.10.1109/ACC.2012.6315112Suche in Google Scholar

4. Do, K. D. and J. Pan. 2009. Control of ships and underwater vehicles: design for underactuated and nonlinear marine systems. Springer Science & Business Media.10.1007/978-1-84882-730-1Suche in Google Scholar

5. Eriksen, B.-O. H., G. Bitar, M. Breivik and A. M. Lekkas. 2020. Hybrid Collision Avoidance for ASVs Compliant With COLREGs Rules 8 and 13–17. Frontiers in Robotics and AI 7: 1–18.10.3389/frobt.2020.00011Suche in Google Scholar PubMed PubMed Central

6. Eriksen, B.-O. H. and M. Breivik. 2017. MPC-Based mid-level collision avoidance for ASVs using nonlinear programming. In: IEEE Conference on Control Technology and Applications (CCTA). IEEE, pp. 766–772.10.1109/CCTA.2017.8062554Suche in Google Scholar

7. Fliess, M., J. Levine, P. Martin and P. Rouchon. 1995. Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control 61(6): 1327–1361.10.1080/00207179508921959Suche in Google Scholar

8. Fossen, T. I. 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd.10.1002/9781119994138Suche in Google Scholar

9. Helling, S., M. Lutz and T. Meurer. 2020. Flatness-based MPC for underactuated surface vessels in confined areas. IFAC World Congress 53(2): 14 686–14 691.10.1016/j.ifacol.2020.12.1831Suche in Google Scholar

10. Helling, S. and T. Meurer. 2021. A Culling Procedure for Collision Avoidance Model Predictive Control with Application to Ship Autopilot Models. IFAC-PapersOnLine 54(16): 43–50. Conference on Control Applications in Marine Systems, Robotics, and Vehicles (CAMS).10.1016/j.ifacol.2021.10.071Suche in Google Scholar

11. Helling, S., C. Roduner and T. Meurer. 2021. On the Dual Implementation of Collision-Avoidance Constraints in Path-Following MPC for Underactuated Surface Vessels. In: American Control Conference (ACC). IEEE, pp. 3366–3371.10.23919/ACC50511.2021.9482890Suche in Google Scholar

12. Johansen, T. A. and T. I. Fossen. 2013. Control allocation – A survey. Automatica 49(5): 1087–1103.10.1016/j.automatica.2013.01.035Suche in Google Scholar

13. LaValle, S. M. 1998. Rapidly-Exploring Random Trees: A New Tool for Path Planning. The annual research report.Suche in Google Scholar

14. Lutz, M. and T. Meurer. 2021. Optimal Trajectory Planning and Model Predictive Control of Underactuated Marine Surface Vessels using a Flatness-Based Approach. In: American Control Conference (ACC). IEEE, pp. 4667–4673.10.23919/ACC50511.2021.9483265Suche in Google Scholar

15. Paliotta, C., E. Lefeber, K. Y. Pettersen, J. Pinto, M. Costa and J. T. de Figueiredo Borges de Sousa. 2019. Trajectory tracking and path following for underactuated marine vehicles. IEEE Transactions on Control Systems Technology 27(4): 1423–1437.10.1109/TCST.2018.2834518Suche in Google Scholar

16. Patel, R. B. and P. J. Goulart. 2011. Trajectory generation for aircraft avoidance maneuvers using online optimization. Journal of Guidance, Control, and Dynamics 34(1): 218–230.10.2514/1.49518Suche in Google Scholar

17. Petereit, J., T. Emter, C. W. Frey, T. Kopfstedt and A. Beutel. 2012. Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments. In: German Conference on Robotics, no. 1. VDE, pp. 227–232.Suche in Google Scholar

18. Titterton, D. and J. Weston. 2004. Strapdown Inertial Navigation Technology. Institution of Engineering and Technology.10.1049/PBRA017ESuche in Google Scholar

19. Zhang, X., A. Liniger and F. Borrelli. 2021. Optimization-Based Collision Avoidance. IEEE Transactions on Control Systems Technology 29(3): 972–983.10.1109/TCST.2019.2949540Suche in Google Scholar

20. Zheng, H., R. R. Negenborn and G. Lodewijks. 2016. Predictive path following with arrival time awareness for waterborne AGVs. Transportation Research Part C: Emerging Technologies 70: 214–237.10.1016/j.trc.2015.11.004Suche in Google Scholar

21. Zweigel, R., J. Gehrt, S. Liu, S. Roy, C. Büskens, M. Kurowski, T. Jeinsch, A. Schubert, M. Gluch, O. Simanski, E. Pairet-Garcia, F. Siemer and D. Abel. 2019. Optimal maneuvering and control of cooperative vehicles as case study for maritime applications within harbors. In: 2019 18th European Control Conference (ECC). IEEE, pp. 3022–3027.10.23919/ECC.2019.8796071Suche in Google Scholar

Received: 2021-11-04
Accepted: 2022-03-23
Published Online: 2022-05-12
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2021-0160/html
Button zum nach oben scrollen