Startseite Atomic decomposition of a real Hardy space for Jacobi analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Atomic decomposition of a real Hardy space for Jacobi analysis

  • Takeshi Kawazoe EMAIL logo
Veröffentlicht/Copyright: 17. September 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Advances in Pure and Applied Mathematics
Aus der Zeitschrift Band 2 Heft 3-4

Abstract

Let (ℝ+, Δ(x)dx) be a Jacobi hypergroup with weight function Δ(x) = c(sinh x)2α+1(cosh x)2β+1. As in the Euclidean case, the real Hardy space H1(Δ) for (ℝ+, Δ(x)dx) is defined as the set of all locally integrable functions on ℝ+ whose radial maximal functions belong to L1(Δ). In this paper we give a characterization of H1(Δ) in terms of weighted Triebel–Lizorkin spaces on ℝ via the Abel transform. As an application, we introduce three types of atoms for (ℝ+, Δ), one of them is smooth, and give an atomic decomposition of H1(Δ).

Received: 2010-04-29
Accepted: 2010-05-31
Published Online: 2010-09-17
Published in Print: 2011-September

© de Gruyter 2011

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam.2010.036/html
Button zum nach oben scrollen