Startseite The metric derivative of set-valued functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The metric derivative of set-valued functions

  • Mohamad Muslikh ORCID logo EMAIL logo , Adem Kilicman ORCID logo , Siti Hasana bt Sapar und Norfifah bt Bachoklati
Veröffentlicht/Copyright: 9. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, we introduce the notion of “metrically differentiable” for set-valued functions. By using this notion, it is shown that each Lipschitz set-valued function is differentiable almost everywhere. Its relationship to the differentiation in the sense of Hukuhara and its generalizations are also discussed.

Acknowledgements

The authors are very grateful to the referees for their useful comments that improve the manuscript.

References

[1] L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl. 25, Oxford University Press, Oxford, 2004. Suche in Google Scholar

[2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. Suche in Google Scholar

[3] M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205–223. Suche in Google Scholar

[4] B. Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), no. 1, 113–123. 10.1090/S0002-9939-1994-1189747-7Suche in Google Scholar

[5] M. Kisielewicz, Differential Inclusions and Optimal Control, Math. Appl. (East European Ser.) 44, Kluwer Academic, Dordrecht, 1991. Suche in Google Scholar

[6] V. Lakshmikantham, T. G. Bhaskar and J. Vasundhara Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific, Cambridge, 2006. Suche in Google Scholar

[7] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2009. 10.1137/1.9780898717716Suche in Google Scholar

[8] R. Moriello, Partial differentiation on a metric space, Pi Mu Epsilon J. 5 (1974), 514–519. Suche in Google Scholar

[9] M. Muslikh, A. Kılıçman, S. H. Sapar and N. Bachok, Absolute differentiation of set-valued functions on metric spaces, preprint. Suche in Google Scholar

[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966. Suche in Google Scholar

[11] K. Skaland, Differentiation on metric spaces, Proc. S. D. Acad. Sci. 54 (1975), 75–77. Suche in Google Scholar

[12] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems 161 (2010), no. 11, 1564–1584. 10.1016/j.fss.2009.06.009Suche in Google Scholar

[13] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal. 71 (2009), no. 3–4, 1311–1328. 10.1016/j.na.2008.12.005Suche in Google Scholar

Received: 2018-02-09
Revised: 2018-03-24
Accepted: 2018-07-11
Published Online: 2018-08-09
Published in Print: 2019-07-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2018-0028/html
Button zum nach oben scrollen