Startseite A note on the behavior of the Dunkl maximal operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A note on the behavior of the Dunkl maximal operator

  • Luc Deleaval EMAIL logo
Veröffentlicht/Copyright: 11. Februar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This note is a contribution to the Proceedings of the Conference of the Tunisian Mathematical Society CSMT 2017. After briefly revisiting the case of the standard Hardy–Littlewood maximal operator, we will discuss the behavior of the Dunkl maximal operator in both the scalar and vector-valued cases.

MSC 2010: 42B25; 42B10; 43A85

References

[1] B. Amri, On the integral representations for Dunkl kernels of type A2, J. Lie Theory 26 (2016), no. 4, 1163–1175. Suche in Google Scholar

[2] B. Amri and M. Sifi, Singular integral operators in Dunkl setting, J. Lie Theory 22 (2012), no. 3, 723–739. Suche in Google Scholar

[3] J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. 10.2307/2374532Suche in Google Scholar

[4] J. Bourgain, On the Lp-bounds for maximal functions associated to convex bodies in 𝐑n, Israel J. Math. 54 (1986), no. 3, 257–265. 10.1007/BF02764955Suche in Google Scholar

[5] J. Bourgain, On dimension free maximal inequalities for convex symmetric bodies in 𝐑n, Geometrical Aspects of Functional Analysis (1985/86), Lecture Notes in Math. 1267, Springer, Berlin (1987), 168–176. 10.1007/BFb0078144Suche in Google Scholar

[6] J. Bourgain, On the Hardy–Littlewood maximal function for the cube, Israel J. Math. 203 (2014), no. 1, 275–293. 10.1007/s11856-014-1059-2Suche in Google Scholar

[7] A. Carbery, An almost-orthogonality principle with applications to maximal functions associated to convex bodies, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 269–273. 10.1090/S0273-0979-1986-15436-4Suche in Google Scholar

[8] S. Charpentier and L. Deleaval, On a vector-valued Hopf–Dunford–Schwartz lemma, Positivity 17 (2013), no. 3, 899–910. 10.1007/s11117-012-0211-7Suche in Google Scholar

[9] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147–162. 10.1007/BF01244305Suche in Google Scholar

[10] L. Deleaval, Fefferman–Stein inequalities for the 2d Dunkl maximal operator, J. Math. Anal. Appl. 360 (2009), no. 2, 711–726. 10.1016/j.jmaa.2009.07.014Suche in Google Scholar

[11] L. Deleaval, Two results on the Dunkl maximal operator, Studia Math. 203 (2011), no. 1, 47–68. 10.4064/sm203-1-3Suche in Google Scholar

[12] L. Deleaval, Dunkl kernel and Dunkl translation for a positive subsystem of orthogonal roots, Adv. Pure Appl. Math. 4 (2013), no. 2, 107–137. 10.1515/apam-2012-0013Suche in Google Scholar

[13] L. Deleaval, On the boundedness of the Dunkl spherical maximal operator, J. Topol. Anal. 8 (2016), no. 3, 475–495. 10.1142/S1793525316500163Suche in Google Scholar

[14] L. Deleaval, N. Demni and H. Youssfi, Dunkl kernel associated with dihedral groups, J. Math. Anal. Appl. 432 (2015), no. 2, 928–944. 10.1016/j.jmaa.2015.07.029Suche in Google Scholar

[15] L. Deleaval, O. Guédon and B. Maurey, Dimension free bounds for the Hardy–Littlewood maximal operator associated to convex sets, Ann. Fac. Sci. Toulouse Math. (6), to appear. 10.5802/afst.1567Suche in Google Scholar

[16] L. Deleaval and C. Kriegler, Dimension free bounds for the vector-valued Hardy–Littlewood maximal operator, Rev. Mat. Iberoam, to appear. 10.4171/rmi/1050Suche in Google Scholar

[17] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure Appl. Math. 7, Interscience Publishers, New York, 1958. Suche in Google Scholar

[18] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Suche in Google Scholar

[19] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa 1991), Contemp. Math. 138, American Mathematical Society, Providence (1992), 123–138. 10.1090/conm/138/1199124Suche in Google Scholar

[20] C. F. Dunkl, Intertwining operators associated to the group S3, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3347–3374. Suche in Google Scholar

[21] C. F. Dunkl, An intertwining operator for the group B2, Glasg. Math. J. 49 (2007), no. 2, 291–319. 10.1017/S0017089507003709Suche in Google Scholar

[22] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia Math. Appl. 81, Cambridge University Press, Cambridge, 2001. 10.1017/CBO9780511565717Suche in Google Scholar

[23] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. 10.2307/2373450Suche in Google Scholar

[24] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland Publishing, Amsterdam, 1985. Suche in Google Scholar

[25] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts in Math. 249, Springer, New York, 2008. 10.1007/978-0-387-09432-8Suche in Google Scholar

[26] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), no. 1, 81–116. 10.1007/BF02547518Suche in Google Scholar

[27] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge University Press, Cambridge, 1990. 10.1017/CBO9780511623646Suche in Google Scholar

[28] A. D. Melas, The best constant for the centered Hardy–Littlewood maximal inequality, Ann. of Math. (2) 157 (2003), no. 2, 647–688. 10.4007/annals.2003.157.647Suche in Google Scholar

[29] D. Müller, A geometric bound for maximal functions associated to convex bodies, Pacific J. Math. 142 (1990), no. 2, 297–312. 10.2140/pjm.1990.142.297Suche in Google Scholar

[30] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compos. Math. 85 (1993), no. 3, 333–373. Suche in Google Scholar

[31] M. Rösler, Bessel-type signed hypergroups on 𝐑, Probability Measures on Groups and Related Structures. XI (Oberwolfach 1994), World Scientific Publishing, River Edge (1995), 292–304. Suche in Google Scholar

[32] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. 10.1215/S0012-7094-99-09813-7Suche in Google Scholar

[33] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2413–2438. 10.1090/S0002-9947-03-03235-5Suche in Google Scholar

[34] M. Rösler, Dunkl operators: Theory and applications, Orthogonal Polynomials and Special Functions (Leuven 2002), Lecture Notes in Math. 1817, Springer, Berlin (2003), 93–135. 10.1007/3-540-44945-0_3Suche in Google Scholar

[35] J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), no. 2, 395–404. 10.1215/S0012-7094-86-05324-XSuche in Google Scholar

[36] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Ann. of Math. Stud. 63, Princeton University Press, Princeton, 1970. 10.1515/9781400881871Suche in Google Scholar

[37] E. M. Stein, Maximal functions. I. Spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), no. 7, 2174–2175. 10.1073/pnas.73.7.2174Suche in Google Scholar PubMed PubMed Central

[38] E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 359–376. 10.1090/S0273-0979-1982-15040-6Suche in Google Scholar

[39] E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in 𝐑n for large n, Ark. Mat. 21 (1983), no. 2, 259–269. 10.1007/BF02384314Suche in Google Scholar

[40] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform, J. Anal. Math. 97 (2005), 25–55. 10.1007/BF02807401Suche in Google Scholar

[41] Q. Xu, H functional calculus and maximal inequalities for semigroups of contractions on vector-valued Lp-spaces, Int. Math. Res. Not. IMRN (2015), no. 14, 5715–5732. 10.1093/imrn/rnu104Suche in Google Scholar

[42] Y. Xu, Orthogonal polynomials for a family of product weight functions on the spheres, Canad. J. Math. 49 (1997), no. 1, 175–192. 10.4153/CJM-1997-009-4Suche in Google Scholar

Received: 2017-10-06
Revised: 2017-12-06
Accepted: 2017-12-20
Published Online: 2018-02-11
Published in Print: 2018-10-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2018-0019/html
Button zum nach oben scrollen