Startseite Some curvature properties of paracontact metric manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some curvature properties of paracontact metric manifolds

  • Krishanu Mandal EMAIL logo und Uday Chand De
Veröffentlicht/Copyright: 24. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The purpose of this paper is to study Ricci semisymmetric paracontact metric manifolds satisfying ξh=0 and such that the sectional curvature of the plane section containing ξ equals a non-zero constant c. Also, we study paracontact metric manifolds satisfying the curvature condition QR=0, where Q and R are the Ricci operator and the Riemannian curvature tensor, respectively, and second order symmetric parallel tensors in paracontact metric manifolds under the same conditions. Several consequences of these results are discussed.

Acknowledgements

The authors are thankful to the referee for his/her valuable suggestions that led to the improvement of the paper.

References

[1] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math. 55 (2011), no. 2, 697–718. 10.1215/ijm/1359762409Suche in Google Scholar

[2] B. Cappelletti Montano, Bi-paracontact structures and Legendre foliations, Kodai Math. J. 33 (2010), no. 3, 473–512. 10.2996/kmj/1288962554Suche in Google Scholar

[3] B. Cappelletti-Montano, A. Carriazo and V. Martín-Molina, Sasaki–Einstein and paraSasaki–Einstein metrics from (κ,μ)-structures, J. Geom. Phys. 73 (2013), 20–36. 10.1016/j.geomphys.2013.05.001Suche in Google Scholar

[4] B. Cappelletti Montano and L. Di Terlizzi, Geometric structures associated to a contact metric (κ,μ)-space, Pacific J. Math. 246 (2010), no. 2, 257–292. 10.2140/pjm.2010.246.257Suche in Google Scholar

[5] B. Cappelletti Montano, I. Küpeli Erken and C. Murathan, Nullity conditions in paracontact geometry, Differential Geom. Appl. 30 (2012), no. 6, 665–693. 10.1016/j.difgeo.2012.09.006Suche in Google Scholar

[6] U. C. De, Second order parallel tensors on P-Sasakian manifolds, Publ. Math. Debrecen 49 (1996), no. 1–2, 33–37. 10.5486/PMD.1996.1596Suche in Google Scholar

[7] U. C. De, S. Deshmukh and K. Mandal, On three-dimensional N(k)-paracontact metric manifolds and Ricci solitons, Bull. Iranian Math. Soc., to appear. Suche in Google Scholar

[8] U. C. De and K. Mandal, Certain results on generalized (k,μ)-contact metric manifolds, J. Geom. 108 (2017), no. 2, 611–621. 10.1007/s00022-016-0362-ySuche in Google Scholar

[9] L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc. 25 (1923), no. 2, 297–306. 10.1090/S0002-9947-1923-1501245-6Suche in Google Scholar

[10] S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173–187. 10.1017/S0027763000021565Suche in Google Scholar

[11] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. of Math. (2) 27 (1925), no. 2, 91–98. 10.2307/1967964Suche in Google Scholar

[12] V. Martín-Molina, Local classification and examples of an important class of paracontact metric manifolds, Filomat 29 (2015), no. 3, 507–515. 10.2298/FIL1503507MSuche in Google Scholar

[13] V. A. Mirzoyan, Structure theorems for Riemannian Ric-semisymmetric spaces, Izv. Vyssh. Uchebn. Zaved. Mat. (1992), no. 6, 80–89. Suche in Google Scholar

[14] R. Sharma, Second order parallel tensors on contact manifolds, Algebras Groups Geom. 7 (1990), no. 2, 145–152. Suche in Google Scholar

[15] P. A. Shirokov, Constant vector fields and tensor fields of second order in Riemannian spaces, Izv. Kazan Fiz. Mat. Obshchestva Ser 25 (1925), 86–114. Suche in Google Scholar

[16] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)R=0. I. The local version, J. Differential Geom. 17 (1982), no. 4, 531–582. Suche in Google Scholar

[17] P. Verheyen and L. Verstraelen, A new intrinsic characterization of hypercylinders in Euclidean spaces, Kyungpook Math. J. 25 (1985), no. 1, 1–4. Suche in Google Scholar

[18] Y. Wang and X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28 (2014), no. 4, 839–847. 10.2298/FIL1404839WSuche in Google Scholar

[19] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2009), no. 1, 37–60. 10.1007/s10455-008-9147-3Suche in Google Scholar

Received: 2017-05-31
Revised: 2017-09-16
Accepted: 2017-10-02
Published Online: 2017-10-24
Published in Print: 2018-07-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2017-0064/html
Button zum nach oben scrollen