Startseite Qualitative uncertainty principle for the Gabor transform on certain locally compact groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Qualitative uncertainty principle for the Gabor transform on certain locally compact groups

  • Jyoti Sharma und Ajay Kumar ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Several classes of locally compact groups have been shown to possess a qualitative uncertainty principle for the Gabor transform. These include Moore groups, the Heisenberg group n, the group n×D (where D is a discrete group) and other low-dimensional nilpotent Lie groups.

MSC 2010: 43A30; 22D99; 22E25

Dedicated to late Professor Eberhard Kaniuth


Award Identifier / Grant number: 21/12/2014(ii)EU-V

Funding statement: The first author is supported by University Grants Commission (Ref. No:21/12/2014(ii)EU-V).

Acknowledgements

The authors would like to thank the referee for providing the proof of Theorem 3.6 and several other suggestions.

References

[1] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299–324. 10.1016/0022-1236(73)90075-XSuche in Google Scholar

[2] A. Bansal and A. Kumar, Heisenberg uncertainty inequality for Gabor transform, J. Math. Inequal. 10 (2016), no. 3, 737–749. 10.7153/jmi-10-60Suche in Google Scholar

[3] A. Bansal and A. Kumar, Qualitative uncertainty principle for Gabor transform, Bull. Korean Math. Soc. 54 (2017), no. 1, 71–84. 10.4134/BKMS.b150690Suche in Google Scholar

[4] M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), no. 1, 180–183. 10.1016/0022-247X(85)90140-4Suche in Google Scholar

[5] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications. Part I: Basic Theory and Examples, Cambridge Stud. Adv. Math. 18, Cambridge University Press, Cambridge, 1990. Suche in Google Scholar

[6] S. Echterhoff, E. Kaniuth and A. Kumar, A qualitative uncertainty principle for certain locally compact groups, Forum Math. 3 (1991), no. 4, 355–369. 10.1515/form.1991.3.355Suche in Google Scholar

[7] G. B. Folland, A Course in Abstract Harmonic Analysis, 2nd ed., Textb. Math., CRC Press, Boca Raton, 2016. 10.1201/b19172Suche in Google Scholar

[8] J. J. F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 1–21. 10.1090/S0273-0979-1985-15350-9Suche in Google Scholar

[9] J. A. Hogan, A qualitative uncertainty principle for unimodular groups of type I, Trans. Amer. Math. Soc. 340 (1993), no. 2, 587–594. Suche in Google Scholar

[10] E. Kaniuth, Minimizing functions for an uncertainty principle on locally compact groups of bounded representation dimension, Proc. Amer. Math. Soc. 135 (2007), no. 1, 217–227. 10.1090/S0002-9939-06-08451-6Suche in Google Scholar

[11] E. Kaniuth, Qualitative uncertainty principles for groups with finite dimensional irreducible representations, J. Funct. Anal. 257 (2009), no. 1, 340–356. 10.1016/j.jfa.2008.12.020Suche in Google Scholar

[12] A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions. I, Ann. Sci. Éc. Norm. Supér. (4) 5 (1972), 459–516. 10.24033/asens.1235Suche in Google Scholar

[13] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. 10.1090/S0002-9947-1972-0302817-8Suche in Google Scholar

[14] O. A. Nielsen, Unitary Representations and Coadjoint Orbits of Low-Dimensional Nilpotent LIe Groups, Queen’s Papers Pure Appl. Math. 63, Queen’s University, Kingston, 1983. Suche in Google Scholar

Received: 2017-04-25
Revised: 2017-11-24
Accepted: 2017-11-24
Published Online: 2017-12-23
Published in Print: 2018-07-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2017-0050/html
Button zum nach oben scrollen