Startseite Optimal control problem and viscosity solutions for the Vlasov equation in Yang–Mills charged Bianchi models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimal control problem and viscosity solutions for the Vlasov equation in Yang–Mills charged Bianchi models

  • Raoul Domingo Ayissi EMAIL logo und Remy Magloire Etoua
Veröffentlicht/Copyright: 28. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In 2005, Briani and Rampazzo [4], using the results of [10, 12, 13, 14], gave a density approach to Hamilton–Jacobi equations with t-measurable Hamiltonians. In this paper we firstly give more details and do more investigation on viscosity solutions for Hamilton–Jacobi equations. Then we show, using an important result of [4], the existence and uniqueness of viscosity solutions to the Vlasov relativistic equation in Yang–Mills charged Bianchi space times, with non zero mass. Thirdly, we clearly display, in the case of the Vlasov equation, the optimal control problem. To our knowledge, the method and techniques used here are original and thus, totally different from those used in [1, 5, 6, 8, 13, 15, 16] who have studied the same equation.

MSC 2010: 83Cxx

References

[1] Alves A., Equation de Liouville pour les particules de masse nulle, C. R. Acad. Sci. Paris Ser. A 278 (1975), 1151–1154. Suche in Google Scholar

[2] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Springer, Berlin, 1994. Suche in Google Scholar

[3] Bressan A., Viscosity solutions of Hamilton–Jacobi equations and Optimal control problems, preprint 2001, https://www.math.psu.edu/bressan/PSPDF/hj.pdf. Suche in Google Scholar

[4] Briani A. and Rampazzo F., A density approach to Hamilton–Jacobi equations with t-measurable Hamiltonians, NoDEA Nonlinear Differential Equations Appl. 12 (2005), 71–91. 10.1007/s00030-004-2030-4Suche in Google Scholar

[5] Choquet-Bruhat Y., Existence and Uniqueness for the Einstein–Maxwell–Liouville System, Nankova Dumka, Kiev, 1972. Suche in Google Scholar

[6] Choquet-Bruhat Y. and Noutchegueme N., Solution globale des équations de Yang–Mills–Vlasov (masse nulle), C. R. Acad. Sci. Paris Sér. I 311 (1990), 785–788. Suche in Google Scholar

[7] Choquet-Bruhat Y. and Noutchegueme N., Système de Yang–Mills–Vlasov en jauge temporelle, Ann. Inst. Henri Poincaré Phys. Théor. 55 (1991), 759–787. Suche in Google Scholar

[8] Choquet-Bruhat Y. and Noutchegueme N., Yang–Mills Vlasov systems, Nonlinear Hyperbolic Equations and Field Theory (Varenna 1990), Pitman Res. Notes Math. Ser. 253, Longman Scientific & Technical, Harlow (1992), 52–71. Suche in Google Scholar

[9] Crandall M., Evans L. C. and Lions P. L., Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. 10.21236/ADA118607Suche in Google Scholar

[10] Crandall M. and Lions P. L., Remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton–Jacobi equations, Illinois J. Math. 31 (1987), 665–688. 10.1215/ijm/1256063577Suche in Google Scholar

[11] Evans L. C., Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010. Suche in Google Scholar

[12] Ishii H., Uniqueness of unbounded viscosity solutions of Hamilton–Jacobi equations, Indiana Univ. Math. J. 33 (1984), 721–748. 10.1512/iumj.1984.33.33038Suche in Google Scholar

[13] Ishii H., Hamilton–Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ. 28 (1985), 33–77. Suche in Google Scholar

[14] Ley O., Lower bound gradient estimate for first-order Hamilton–Jacobi equations and applications to the regularity of propagations fronts, Adv. Differential Equations 6 (2001), 547–576. 10.57262/ade/1357141855Suche in Google Scholar

[15] Noutchegueme N. and Noundjeu P., Système de Yang–Mills–Vlasov pour des particules avec densité de charge de jauge non abélienne sur un espace-temps courbe, Ann. Henri Poincaré 1 (2000), 385–404. 10.1007/s000230050008Suche in Google Scholar

[16] Wollman S., Local existence and uniqueness theory of the Vlasov–Maxwell system, J. Math. Anal. Appl. 127 (1987), 103–121. 10.1016/0022-247X(87)90143-0Suche in Google Scholar

Received: 2015-6-8
Revised: 2016-10-21
Accepted: 2016-12-14
Published Online: 2017-1-28
Published in Print: 2017-4-1

© 2017 by De Gruyter

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2017-0001/html
Button zum nach oben scrollen