Abstract
In this paper, we show the existence and multiplicity of nontrivial non-negative solutions of the fractional p-Kirchhoff problem

where (-Δ)ps is the fractional p-Laplace operator, Ω is a bounded domain in ℝn with smooth boundary, f ∈ Lr/(r-q)(Ω) and g ∈ L∞(Ω) are sign changing, and M is a continuous function. Moreover, ps < n < 2ps and 1 < q < p < r ≤ ps* = np/(n - ps).
Received: 2015-3-17
Revised: 2015-9-28
Accepted: 2015-10-1
Published Online: 2015-10-20
Published in Print: 2016-4-1
© 2016 by De Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Frontmatter
- The Riesz–Herz equivalence for capacitary maximal functions on metric measure spaces
- On graded classical primary submodules
- Existence and multiplicity results for fractional p-Kirchhoff equation with sign changing nonlinearities
- Transversal hypersurfaces with (f,g,u,v,λ)-structure of a nearly trans-Sasakian manifold
- Generalized solution for a class of Hamilton–Jacobi equations
- Characterizations of symmetric cones by means of the basic relative invariants of homogeneous cones
Schlagwörter für diesen Artikel
Fractional p-Laplacian;
Kirchhoff type problem;
critical exponent problem
Artikel in diesem Heft
- Frontmatter
- The Riesz–Herz equivalence for capacitary maximal functions on metric measure spaces
- On graded classical primary submodules
- Existence and multiplicity results for fractional p-Kirchhoff equation with sign changing nonlinearities
- Transversal hypersurfaces with (f,g,u,v,λ)-structure of a nearly trans-Sasakian manifold
- Generalized solution for a class of Hamilton–Jacobi equations
- Characterizations of symmetric cones by means of the basic relative invariants of homogeneous cones