Startseite Existence and uniqueness of solutions to higher order fractional partial differential equations with purely integral conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence and uniqueness of solutions to higher order fractional partial differential equations with purely integral conditions

  • Djamila Chergui , Ahcene Merad und Sandra Pinelas ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. Oktober 2022
Analysis
Aus der Zeitschrift Analysis Band 43 Heft 1

Abstract

In this paper, we prove the existence and uniqueness of Caputo time fractional pseudo-hyperbolic equations of higher order with purely nonlocal conditions of integral type. We use an a priori estimate method; the so-called energy inequalities method, based on some functional analysis tools, is developed for a Caputo time fractional of 2 m -th and ( 2 m + 1 ) -th order and the density of the range of the operator generated by the considered problem. Using the Laplace transform and homotopy perturbation, we find a semi-analytical solution. Finally, we give some examples for illustration.

References

[1] B. Ahmad and J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integro differential equations with integral boundary conditions, Bound. Value Probl. 2009 (2009), Article ID 708576. 10.1155/2009/708576Suche in Google Scholar

[2] A. A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, preprint (2010), https://arxiv.org/abs/1105.4592v1. 10.1134/S0012266110050058Suche in Google Scholar

[3] A. Anguraj and P. Karthikeyan, Existence of solutions for fractional semilinear evolution boundary value problem, Commun. Appl. Anal. 14 (2010), 505–514. Suche in Google Scholar

[4] Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Appl. 311 (2005), no. 2, 495–505. 10.1016/j.jmaa.2005.02.052Suche in Google Scholar

[5] M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal. 87 (2008), 851–863. 10.1080/00036810802307579Suche in Google Scholar

[6] A. Bouziani, On the solvability of parabolic and hyperbolic problems with a boundary integral condition, Int. J. Math. Math. Sci. 31 (2002), no. 4, 201–213. 10.1155/S0161171202005860Suche in Google Scholar

[7] A. Bouziani, On a class of nonlinear reaction-diffusion systems with nonlocal boundary conditions, Abstr. Appl. Anal. 9 (2004), 793–813. 10.1155/S1085337504311061Suche in Google Scholar

[8] A. Bouziani, Solution of a transmission problem for semilinear parabolic-hyperbolic equations by the time-discretization method, J. Appl. Math. Stoch. Anal. 2006 (2006), Article ID 61439. 10.1155/JAMSA/2006/61439Suche in Google Scholar

[9] L. Cveticanin, Homotopy-perturbation method for pure nonlinear differential equation, Chaos Solitons Fractals 30 (2006), no. 5, 1221–1230. 10.1016/j.chaos.2005.08.180Suche in Google Scholar

[10] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. Suche in Google Scholar

[11] K. M. Furati and N. Tatar, An existence result for a nonlocal fractional differential problem, J. Fract. Calc. 26 (2004), 43–51. Suche in Google Scholar

[12] J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178 (1999), no. 3–4, 257–262. 10.1016/S0045-7825(99)00018-3Suche in Google Scholar

[13] A. A. Kilbas, H. M. Srivasta and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. Suche in Google Scholar

[14] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985. 10.1007/978-1-4757-4317-3Suche in Google Scholar

[15] X. J. Li and C. J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), 1016–1015. 10.4208/cicp.020709.221209aSuche in Google Scholar

[16] M. Madani, M. Fathizadeh, Y. Khan and A. Yildrim, On coupling the homotpy perturbation method ans Laplace transformation, Math. Comput. Model. 53 (2011), no. 9–10, 1937–1945. 10.1016/j.mcm.2011.01.023Suche in Google Scholar

[17] S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math. Anal. Appl. 316 (2006), 189–209. 10.1016/j.jmaa.2005.04.072Suche in Google Scholar

[18] S. Mesloub and F. Aldosari, Even higher order fractional initial boundary value problem with nonlocal constraints of purely integral type, Symmetry 11 (2019), Paper No. 305. 10.3390/sym11030305Suche in Google Scholar

[19] Z. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay, Comput. Math. Appl. 61 (2011), no. 4, 860–870. 10.1016/j.camwa.2010.12.034Suche in Google Scholar

[20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. Suche in Google Scholar

Received: 2021-04-02
Revised: 2022-05-07
Accepted: 2022-05-07
Published Online: 2022-10-26
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2021-0016/html
Button zum nach oben scrollen