Startseite Cohomogeneity one central Kähler metrics in dimension four
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cohomogeneity one central Kähler metrics in dimension four

  • Thalia Jeffres EMAIL logo , Gideon Maschler und Robert Ream
Veröffentlicht/Copyright: 9. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.

MSC 2010: 53C55
  1. Communicated by: P. Eberlein

References

[1] A. B. Aazami, G. Maschler, Canonical Kähler metrics on classes of Lorentzian 4-manifolds. Ann. Global Anal. Geom. 57 (2020), 175–204. MR4057456 Zbl 1443.5304110.1007/s10455-019-09694-5Suche in Google Scholar

[2] A. B. Aazami, G. Maschler, Kähler metrics via Lorentzian geometry in dimension four. Complex Manifolds 7 (2020), 36–61. MR4034636 Zbl 1464.5302110.1515/coma-2020-0002Suche in Google Scholar

[3] S. Bando, T. Mabuchi, On some integral invariants on complex manifolds. I. Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 197–200. MR854218 Zbl 0592.3202210.3792/pjaa.62.197Suche in Google Scholar

[4] V. A. Belinski˘ı, G. W. Gibbons, D. N. Page, C. N. Pope, Asymptotically Euclidean Bianchi IX metrics in quantum gravity. Phys. Lett. B 76 (1978), 433–435. MR49634310.1016/0370-2693(78)90899-7Suche in Google Scholar

[5] X. X. Chen, G. Tian, Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147 (2002), 487–544. MR1893004 Zbl 1047.5304310.1007/s002220100181Suche in Google Scholar

[6] A. S. Dancer, I. A. B. Strachan, Kähler-Einstein metrics with SU(2) action. Math. Proc. Cambridge Philos. Soc. 115 (1994), 513–525. MR1269936 Zbl 0811.5304610.1017/S0305004100072273Suche in Google Scholar

[7] A. S. Dancer, I. A. B. Strachan, Cohomogeneity-one Kähler metrics. In: Twistor theory (Plymouth) 9–27, Dekker 1995. MR1306953 Zbl 0837.53052Suche in Google Scholar

[8] A. Futaki, K. Tsuboi, Eta invariants and automorphisms of compact complex manifolds. In: Recent topics in differential and analytic geometry, volume 18 of Adv. Stud. Pure Math., 251–270, Academic Press 1990. MR1145258 Zbl 0744.5303110.1016/B978-0-12-001018-9.50010-5Suche in Google Scholar

[9] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings. World Scientific, Hackensack, NJ 2005. MR2194466 Zbl 1084.3201810.1142/5936Suche in Google Scholar

[10] Y. A. Kuznetsov, Elements of applied bifurcation theory, volume 112 of Applied Mathematical Sciences. Springer 2004. MR2071006 Zbl 1082.3700210.1007/978-1-4757-3978-7Suche in Google Scholar

[11] J. Lafontaine, Courbure de Ricci et fonctionnelles critiques. C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 687–690. MR688907 Zbl 0508.53048Suche in Google Scholar

[12] G. Maschler, Central Kähler metrics. Trans. Amer. Math. Soc. 355 (2003), 2161–2182. MR1973986 Zbl 1043.5305610.1090/S0002-9947-03-03161-1Suche in Google Scholar

[13] G. Maschler, R. Ream, On the completeness of some Bianchi type A and related Kähler-Einstein metrics. J. Geom. Anal. 31 (2021), 8347–8384. MR4293935 Zbl 1478.5311810.1007/s12220-020-00597-7Suche in Google Scholar

[14] G. Maschler, R. Ream, Cohomogeneity one Kähler-Ricci solitons under a Heisenberg group action and related metrics. Transform. Groups (2022). DOI 10.1007/s00031-022-09740-w10.1007/s00031-022-09740-wSuche in Google Scholar

[15] B. O’Neill, Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press 1983. MR719023 Zbl 0531.53051Suche in Google Scholar

[16] H. Pedersen, Y. S. Poon, Kähler surfaces with zero scalar curvature. Classical Quantum Gravity 7 (1990), 1707–1719. MR1075860 Zbl 0711.5303910.1088/0264-9381/7/10/005Suche in Google Scholar

[17] Y. A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood. J. Funct. Anal. 255 (2008), 2641–2660. MR2473271 Zbl 1185.3201210.1016/j.jfa.2007.10.009Suche in Google Scholar

[18] J. Song, B. Weinkove, Energy functionals and canonical Kähler metrics. Duke Math. J. 137 (2007), 159–184. MR2309146 Zbl 1116.3201810.1215/S0012-7094-07-13715-3Suche in Google Scholar

[19] V. Tosatti, On the critical points of the Ek functionals in Kähler geometry. Proc. Amer. Math. Soc. 135 (2007), 3985–3988. MR2341949 Zbl 1131.5800910.1090/S0002-9939-07-08962-9Suche in Google Scholar

[20] L. Verdiani, W. Ziller, Smoothness conditions in cohomogeneity one manifolds. Transform. Groups 27 (2022), 311–342. MR4400726 Zbl 1492.5307210.1007/s00031-020-09618-9Suche in Google Scholar

Received: 2022-08-29
Published Online: 2023-08-09
Published in Print: 2023-08-09

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0011/pdf
Button zum nach oben scrollen