Startseite Lifting coarse homotopies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lifting coarse homotopies

  • Thomas Weighill EMAIL logo
Veröffentlicht/Copyright: 17. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Coarse geometry, and in particular coarse homotopy theory, has proven to be a powerful tool for approaching problems in geometric group theory and higher index theory. In this paper,we continue to develop theory in this area by proving a Coarse Lifting Lemma with respect to a certain class of bornologous surjective maps. This class is wide enough to include quotients by coarsely discontinuous group actions, which allows us to obtain results concerning the coarse fundamental group of quotients which are analogous to classical topological results for the fundamental group. As an application, we compute the fundamental group of metric cones over negatively curved compact Riemannian manifolds.

MSC 2010: 51F99; 55Q70
  1. Communicated by: J. Ratcliffe

References

[1] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Springer 1999. MR1744486 Zbl 0988.5300110.1007/978-3-662-12494-9Suche in Google Scholar

[2] U. Bunke, A. Engel, Homotopy theory with bornological coarse spaces. Preprint 2020, arXiv:1607.03657 [math.AT]10.1007/978-3-030-51335-1Suche in Google Scholar

[3] D. Dikranjan, N. Zava, Some categorical aspects of coarse spaces and balleans. Topology Appl. 225 (2017), 164–194. MR3649879 Zbl 1377.5402710.1016/j.topol.2017.04.011Suche in Google Scholar

[4] A. N. Dranishnikov, Asymptotic topology (Russian) Uspekhi Mat. Nauk 55 (2000), no. 6 (336), 71–116. English translation: Russian Math. Surveys 55 (2000), no. 6, 1085–1129. MR1840358 Zbl 1028.5403210.1070/RM2000v055n06ABEH000334Suche in Google Scholar

[5] J. Dydak, C. S. Hoffland, An alternative definition of coarse structures. Topology Appl. 155 (2008), 1013–1021. MR2401211 Zbl 1145.5403210.1016/j.topol.2008.01.002Suche in Google Scholar

[6] R. Geoghegan, Topological methods in group theory. Springer 2008. MR2365352 Zbl 1141.5700110.1007/978-0-387-74614-2Suche in Google Scholar

[7] M. Gromov, Asymptotic invariants of infinite groups. In: Geometric group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., 1–295, Cambridge Univ. Press 1993. MR1253544 Zbl 0841.20039Suche in Google Scholar

[8] L. Higginbotham, T. Weighill, Coarse quotients by group actions and the maximal Roe algebra. J. Topol. Anal. 11 (2019), 875–907. MR4040015 Zbl 0716215810.1142/S1793525319500341Suche in Google Scholar

[9] N. Higson, J. Roe, On the coarse Baum-Connes conjecture. In: Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 227 of London Math. Soc. Lecture Note Ser., 227–254, Cambridge Univ. Press 1995. MR1388312 Zbl 0957.5801910.1017/CBO9780511629365.008Suche in Google Scholar

[10] M. L. Mihalik, Semistability at the end of a group extension. Trans. Amer. Math. Soc. 277 (1983), 307–321. MR690054 Zbl 0518.5700210.1090/S0002-9947-1983-0690054-4Suche in Google Scholar

[11] P. D. Mitchener, B. Norouzizadeh, T. Schick, Coarse homotopy groups. Math. Nachr. 293 (2020), 1515–1533. MR4135825 Zbl 0726180310.1002/mana.201800523Suche in Google Scholar

[12] J. R. Munkres, Topology. Prentice Hall, Inc., Upper Saddle River, NJ 2000. MR3728284 Zbl 0951.54001Suche in Google Scholar

[13] J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104 (1993), x+90 pp. MR1147350 Zbl 0780.5804310.1090/memo/0497Suche in Google Scholar

[14] J. Roe, Index theory, coarse geometry, and topology of manifolds, volume 90 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI 1996. MR1399087 Zbl 0853.5800310.1090/cbms/090Suche in Google Scholar

[15] J. Roe, Lectures on coarse geometry, volume 31 of University Lecture Series. American Mathematical Society 2003. MR2007488 Zbl 1042.5302710.1090/ulect/031Suche in Google Scholar

[16] J. Roe, Warped cones and property A. Geom. Topol. 9 (2005), 163–178. MR2115671 Zbl 1082.5303610.2140/gt.2005.9.163Suche in Google Scholar

[17] R. Willett, G. Yu, Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math. 229 (2012), 1380–1416. MR2871145 Zbl 1243.4606010.1016/j.aim.2011.10.024Suche in Google Scholar

[18] G. Yu, The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2) 147 (1998), 325–355. MR1626745 Zbl 0911.1900110.2307/121011Suche in Google Scholar

[19] G. Yu, The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (2000), 201–240. MR1728880 Zbl 0956.1900410.1007/s002229900032Suche in Google Scholar

[20] G. L. Yu, Coarse Baum–Connes conjecture. K-Theory 9 (1995), 199–221. MR1344138 Zbl 0829.1900410.1007/BF00961664Suche in Google Scholar

Received: 2019-11-13
Revised: 2020-08-13
Published Online: 2021-06-17
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2021-0005/pdf
Button zum nach oben scrollen