Startseite On a class of obstacle problems with (p, q)-growth and explicit u-dependence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On a class of obstacle problems with (p, q)-growth and explicit u-dependence

  • Andrea Gentile ORCID logo , Teresa Isernia ORCID logo EMAIL logo und Antonia Passarelli di Napoli ORCID logo
Veröffentlicht/Copyright: 2. April 2025

Abstract

In this paper, we establish the higher differentiability of the gradient of solutions to variational obstacle problems of the type

min { Ω F ( x , u , D u ) 𝑑 x : u 𝒦 ψ ( Ω ) } .

Here Ω n is a bounded open set, ψ W 0 1 , q ( Ω ) is a fixed function called obstacle, and 𝒦 ψ ( Ω ) is the class of admissible functions. The main feature of the energy densities under consideration here is that they satisfy non-standard growth conditions with respect to the gradient variable and that they explicitly depend on the pair ( x , u ) . Assuming that ψ L loc ( Ω ) W loc 2 , 2 q - p ( Ω ) , we are able to prove a second order regularity result for the solution.

MSC 2020: 35J87; 49J40; 47J20

Communicated by Juha Kinnunen


Funding statement: The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Antonia Passarelli di Napoli have been partially supported through the INdAM-GNAMPA 2024 Project “Interazione ottimale tra la regolarità dei coefficienti e l’anisotropia del problema in funzionali integrali a crescite non standard” (CUP: E53C23001670001). Antonia Passarelli di Napoli has also been supported by the Centro Nazionale per la Mobilità Sostenibile (CN00000023) – Spoke 10 Logistica Merci (CUP: E63C22000930007).

References

[1] E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case 1 < p < 2 , J. Math. Anal. Appl. 140 (1989), no. 1, 115–135. 10.1016/0022-247X(89)90098-XSuche in Google Scholar

[2] M. Bildhauer, M. Fuchs and G. Mingione, A priori gradient bounds and local C 1 , α -estimates for (double) obstacle problems under non-standard growth conditions, Z. Anal. Anwend. 20 (2001), no. 4, 959–985. 10.4171/zaa/1054Suche in Google Scholar

[3] V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math. 650 (2011), 107–160. 10.1515/crelle.2011.006Suche in Google Scholar

[4] H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/74), 831–844. 10.1512/iumj.1974.23.23069Suche in Google Scholar

[5] S.-S. Byun and C. Namkyeong, Higher differentiability for solutions of a general class of nonlinear elliptic obstacle problems with Orlicz growth, NoDEA Nonlinear Differential Equations Appl. 29 (2022), no. 6, Paper No. 73, 25 pp. 10.1007/s00030-022-00807-xSuche in Google Scholar

[6] L. A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities, J. Anal. Math. 37 (1980), 285–295. 10.1007/BF02797689Suche in Google Scholar

[7] M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré C Anal. Non Linéaire 28 (2011), no. 3, 395–411. 10.1016/j.anihpc.2011.02.005Suche in Google Scholar

[8] M. Caselli, M. Eleuteri and A. Passarelli di Napoli, Regularity results for a class of obstacle problems with p , q -growth conditions, ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 19, 26 pp. 10.1051/cocv/2021017Suche in Google Scholar

[9] M. Caselli, A. Gentile and R. Giova, Regularity results for solutions to obstacle problems with Sobolev coefficients, J. Differential Equations 269 (2020), no. 10, 8308–8330. 10.1016/j.jde.2020.06.015Suche in Google Scholar

[10] G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of weak solutions to elliptic equations with p , q -growth, Math. Eng. 5 (2023), no. 3, Paper No. 065, 28 pp. 10.3934/mine.2023065Suche in Google Scholar

[11] G. Cupini, P. Marcellini and E. Mascolo, Regularity for nonuniformly elliptic equations with p , q -growth and explicit x , u -dependence, Arch. Ration. Mech. Anal. 248 (2024), no. 4, Paper No. 60, 45 pp. 10.1007/s00205-024-01982-0Suche in Google Scholar

[12] G. Cupini, P. Marcellini and E. Mascolo, The Leray–Lions existence theorem under general growth conditions, J. Differential Equations 416 (2025), no. 2, 1405–1428. 10.1016/j.jde.2024.10.025Suche in Google Scholar

[13] M. De Rosa and A. G. Grimaldi, A local boundedness result for a class of obstacle problems with non-standard growth conditions, J. Optim. Theory Appl. 195 (2022), no. 1, 282–296. 10.1007/s10957-022-02084-1Suche in Google Scholar

[14] M. Eleuteri, Regularity results for a class of obstacle problems, Appl. Math. 52 (2007), no. 2, 137–170. 10.1007/s10492-007-0007-4Suche in Google Scholar

[15] M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper No. 115, 29 pp. 10.1007/s00526-018-1387-xSuche in Google Scholar

[16] M. Eleuteri and A. Passarelli di Napoli, On the validity of variational inequalities for obstacle problems with non-standard growth, Ann. Fenn. Math. 47 (2022), no. 1, 395–416. 10.54330/afm.114655Suche in Google Scholar

[17] G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 7 (1963/64), 91–140. Suche in Google Scholar

[18] N. Foralli and G. Giliberti, Higher differentiability of solutions for a class of obstacle problems with variable exponents, J. Differential Equations 313 (2022), 244–268. 10.1016/j.jde.2021.12.028Suche in Google Scholar

[19] M. Fuchs, Hölder continuity of the gradient for degenerate variational inequalities, Nonlinear Anal. 15 (1990), no. 1, 85–100. 10.1016/0362-546X(90)90016-ASuche in Google Scholar

[20] M. Fuchs and G. Mingione, Full C 1 , α -regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math. 102 (2000), no. 2, 227–250. 10.1007/s002291020227Suche in Google Scholar

[21] C. Gavioli, A priori estimates for solutions to a class of obstacle problems under p , q -growth conditions, J. Elliptic Parabol. Equ. 5 (2019), no. 2, 325–347. 10.1007/s41808-019-00043-ySuche in Google Scholar

[22] C. Gavioli, Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions, Forum Math. 31 (2019), no. 6, 1501–1516. 10.1515/forum-2019-0148Suche in Google Scholar

[23] A. Gentile, Higher differentiability results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions, Forum Math. 33 (2021), no. 3, 669–695. 10.1515/forum-2020-0299Suche in Google Scholar

[24] A. Gentile and R. Giova, Regularity results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions, Nonlinear Anal. Real World Appl. 68 (2022), Paper No. 103681, 26 pp. 10.1016/j.nonrwa.2022.103681Suche in Google Scholar

[25] F. Giannetti and A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with variable exponents, Math. Z. 280 (2015), no. 3–4, 873–892. 10.1007/s00209-015-1453-4Suche in Google Scholar

[26] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), no. 1, 55–99. 10.1007/BF01172492Suche in Google Scholar

[27] R. Giova and A. Passarelli di Napoli, Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients, Adv. Calc. Var. 12 (2019), no. 1, 85–110. 10.1515/acv-2016-0059Suche in Google Scholar

[28] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, River Edge, 2003. 10.1142/9789812795557Suche in Google Scholar

[29] A. G. Grimaldi and E. Ipocoana, Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems, ESAIM Control Optim. Calc. Var. 28 (2022), Paper No. 51, 35 pp. 10.1051/cocv/2022050Suche in Google Scholar

[30] A. G. Grimaldi and E. Ipocoana, Higher fractional differentiability for solutions to a class of obstacle problems with non-standard growth conditions, Adv. Calc. Var. 16 (2023), no. 4, 935–960. 10.1515/acv-2021-0074Suche in Google Scholar

[31] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. 10.1002/cpa.3160200302Suche in Google Scholar

[32] L. Ma and Z. Zhang, Higher differentiability for solutions of nonhomogeneous elliptic obstacle problems, J. Math. Anal. Appl. 479 (2019), no. 1, 789–816. 10.1016/j.jmaa.2019.06.052Suche in Google Scholar

[33] P. Marcellini, Local Lipschitz continuity for p , q -PDEs with explicit u-dependence, Nonlinear Anal. 226 (2023), Paper No. 113066, 26 pp. Suche in Google Scholar

[34] L. Nevali, Higher differentiability of solutions for a class of obstacle problems with non-standard growth conditions, J. Math. Anal. Appl. 518 (2023), no. 1, Paper No. 126672, 25 pp. 10.1016/j.jmaa.2022.126672Suche in Google Scholar

[35] J. Simon, Régularité de la solution d’un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), no. 3–4, 247–274. 10.5802/afst.569Suche in Google Scholar

[36] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413–4416. Suche in Google Scholar

Received: 2024-10-25
Accepted: 2025-03-02
Published Online: 2025-04-02
Published in Print: 2025-07-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2024-0111/html
Button zum nach oben scrollen