Startseite Mathematik p-harmonic functions by way of intrinsic mean value properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

p-harmonic functions by way of intrinsic mean value properties

  • Ángel Arroyo ORCID logo EMAIL logo und José G. Llorente ORCID logo
Veröffentlicht/Copyright: 30. April 2021

Abstract

Let Ω be a bounded domain in n . Under appropriate conditions on Ω, we prove existence and uniqueness of continuous functions solving the Dirichlet problem associated to certain nonlinear mean value properties in Ω with respect to balls of variable radius. We also show that, when properly normalized, such functions converge to the p-harmonic solution of the Dirichlet problem in Ω for p 2 . Existence is obtained via iteration, a fundamental tool being the construction of explicit universal barriers in Ω.


Communicated by Juan Manfredi


Award Identifier / Grant number: MTM2017-85666-P

Award Identifier / Grant number: 2017-SGR-395

Funding statement: Partially supported by Ministerio de Economía y Competitividad grant MTM2017-85666-P and by Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017-SGR-395. Part of this work has been carried out at the Machine Learning Genoa (MaLGa) center, Universitá di Genova (IT). Á. Arroyo is supported by the UniGe starting grant “curiosity driven”.

A Auxiliary lemmas

Lemma A.1.

Let T [ 0 , π 2 ] and γ > 0 . Then

( cos t + sin 2 T - sin 2 t ) γ ± ( cos t - sin 2 T - sin 2 t ) γ ( 1 + sin T ) γ ± ( 1 - sin T ) γ

whenever | t | T .

Proof.

Let a [ 0 , 1 ] and define φ ± : [ a , 1 ] by

φ ± ( x ) = ( x + x 2 - a 2 ) γ ± ( x - x 2 - a 2 ) γ .

Direct computation shows that

φ ± ( x ) = γ x 2 - a 2 φ ( x ) 0 .

Therefore, φ ± is positive and increasing in [ a , 1 ] . In particular, φ ± ( x ) φ ± ( 1 ) for every x [ a , 1 ] . Then the result follows by letting a = cos T and performing the change of variables x = cos t . ∎

Lemma A.2.

Let γ ( 0 , 1 ) . Then

(A.1) x 2 [ ( 1 + x ) γ - ( 1 - x ) γ ] 1 - 1 2 [ ( 1 + x ) γ + ( 1 - x ) γ ] 2 1 - γ

for all x ( 0 , 1 ] .

Proof.

Let us recall the Taylor series of f ( x ) = ( 1 + x ) γ :

(A.2) ( 1 + x ) γ = 1 + k = 1 ( γ k ) x k

for | x | 1 , where

( γ k ) = ( - 1 ) k - 1 γ ( 1 - γ ) ( 2 - γ ) ( k - 1 - γ ) k !

for each k . Observe that, since γ ( 0 , 1 ) , we have that

( γ 2 k - 1 ) > 0 and ( γ 2 k ) < 0    for each  k .

We can rewrite the left-hand side in (A.1) by replacing (A.2):

x 2 [ ( 1 + x ) γ - ( 1 - x ) γ ] 1 - 1 2 [ ( 1 + x ) γ + ( 1 - x ) γ ] = k = 1 ( γ 2 k - 1 ) x 2 k - k = 1 ( γ 2 k ) x 2 k .

Hence, (A.1) follows from the fact that

k = 1 [ ( γ 2 k - 1 ) + 2 1 - γ ( γ 2 k ) ] x 2 k 0

for every x ( 0 , 1 ) . In fact, every coefficient in the above series is nonpositive, that is,

( γ 2 k - 1 ) + 2 1 - γ ( γ 2 k ) = ( γ 2 k - 1 ) [ 1 + 2 1 - γ γ - 2 k + 1 2 k ] 0

for every k . ∎

Acknowledgements

We wish to thank F. del Teso, J. J. Manfredi and M. Parviainen for bringing to our attention their preprint [8], which motivated part of this work. The first author also wishes to thank the Department of Mathematics and the Machine Learning Genoa (MaLGa) center of the University of Genoa for the support during the elaboration of this article.

References

[1] Á. Arroyo, J. Heino and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p ( x ) -Laplacian, Commun. Pure Appl. Anal. 16 (2017), no. 3, 915–944. 10.3934/cpaa.2017044Suche in Google Scholar

[2] Á. Arroyo and J. G. Llorente, On the asymptotic mean value property for planar p-harmonic functions, Proc. Amer. Math. Soc. 144 (2016), no. 9, 3859–3868. 10.1090/proc/13026Suche in Google Scholar

[3] Á. Arroyo and J. G. Llorente, On the Dirichlet problem for solutions of a restricted nonlinear mean value property, Differential Integral Equations 29 (2016), no. 1–2, 151–166. 10.57262/die/1448323257Suche in Google Scholar

[4] Á. Arroyo and J. G. Llorente, A priori Hölder and Lipschitz regularity for generalized p-harmonious functions in metric measure spaces, Nonlinear Anal. 168 (2018), 32–49. 10.1016/j.na.2017.11.007Suche in Google Scholar

[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), no. 3, 271–283. 10.1109/CDC.1990.204046Suche in Google Scholar

[6] C. Caratheodory, On Dirichlet’s Problem, Amer. J. Math. 59 (1937), no. 4, 709–731. 10.2307/2371339Suche in Google Scholar

[7] D. DeBlassie and R. G. Smits, The p-harmonic measure of a small spherical cap, Matematiche (Catania) 71 (2016), no. 1, 149–171. Suche in Google Scholar

[8] F. del Teso, J. J. Manfredi and M. Parviainen, Convergence of dynamic programming principles for the p-Laplacian, Adv. Calc. Var. (2020), 10.1515/acv-2019-0043. 10.1515/acv-2019-0043Suche in Google Scholar

[9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. 10.1137/1.9781611972030Suche in Google Scholar

[10] W. K. Hayman and P. B. Kennedy, Subharmonic Functions. Vol. I, London Math. Soc. Monogr. 9, Academic Press, London, 1976. Suche in Google Scholar

[11] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, 2006. Suche in Google Scholar

[12] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), no. 3, 699–717. 10.1137/S0036141000372179Suche in Google Scholar

[13] O. D. Kellogg, Converses of Gauss’s theorem on the arithmetic mean, Trans. Amer. Math. Soc. 36 (1934), no. 2, 227–242. 10.1090/S0002-9947-1934-1501739-0Suche in Google Scholar

[14] E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29 (1998), no. 1, 279–292. 10.1137/S0036141095294067Suche in Google Scholar

[15] H. Lebesgue, Sur le problème de Dirichlet, Comptes Rendus (Paris) 154 (1912), 335–337. 10.1007/BF03015070Suche in Google Scholar

[16] P. Lindqvist, Notes on the Stationary p-Laplace Equation, Springer Briefs Math., Springer, Cham, 2019. 10.1007/978-3-030-14501-9Suche in Google Scholar

[17] P. Lindqvist and J. Manfredi, On the mean value property for the p-Laplace equation in the plane, Proc. Amer. Math. Soc. 144 (2016), no. 1, 143–149. 10.1090/proc/12675Suche in Google Scholar

[18] H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions, Differential Integral Equations 27 (2014), no. 3–4, 201–216. 10.57262/die/1391091363Suche in Google Scholar

[19] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881–889. 10.1090/S0002-9939-09-10183-1Suche in Google Scholar

[20] J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 2, 215–241. 10.2422/2036-2145.201005_003Suche in Google Scholar

[21] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167–210. 10.1007/978-1-4419-9675-6_18Suche in Google Scholar

[22] Y. Peres and S. Sheffield, Tug-of-war with noise: A game-theoretic view of the p-Laplacian, Duke Math. J. 145 (2008), no. 1, 91–120. 10.1215/00127094-2008-048Suche in Google Scholar

[23] V. Volterra, Alcune osservazioni sopra propietà atte ad individuare una funzione, Atti Real. Acad. Lincei Roma 18 (1909), 263–266. Suche in Google Scholar

Received: 2020-10-14
Revised: 2021-03-15
Accepted: 2021-03-24
Published Online: 2021-04-30
Published in Print: 2023-01-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2020-0101/html
Button zum nach oben scrollen