Startseite Local regularity results for solutions of linear elliptic equations with drift term
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Local regularity results for solutions of linear elliptic equations with drift term

  • G. R. Cirmi , S. D’Asero , Salvatore Leonardi EMAIL logo und Michaela M. Porzio
Veröffentlicht/Copyright: 20. November 2019

Abstract

We study the local regularity of the solution u of the following nonlinear boundary value problem:

{ 𝒜 u = - div [ E ( x ) u + F ( x ) ] in  Ω , u = 0 on  Ω ,

where Ω is a bounded open subset of N , with N > 2 , 𝒜 is a nonlinear Leray–Lions operator in divergence form, and E ( x ) and F ( x ) are vector fields satisfying suitable local summability properties.

MSC 2010: 35J25; 35B65

Communicated by Jan Bruinier


Funding statement: The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This paper was supported by FIR 2018 and Piano Triennale della Ricerca 2016-2018 (UNICT).

Acknowledgements

The authors are indebted to the anonymous reviewer who contributed to improve the original manuscript with helpful suggestions.

References

[1] L. Boccardo, Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital. (9) 2 (2009), no. 1, 285–297. Suche in Google Scholar

[2] L. Boccardo, S. Buccheri and G. R. Cirmi, Two linear noncoercive Dirichlet problems in duality, Milan J. Math. 86 (2018), no. 1, 97–104. 10.1007/s00032-018-0281-5Suche in Google Scholar

[3] L. Boccardo and T. Leonori, Local properties of solutions of elliptic equations depending on local properties of the data, Methods Appl. Anal. 15 (2008), no. 1, 53–63. 10.4310/MAA.2008.v15.n1.a6Suche in Google Scholar

[4] T. Del Vecchio and M. R. Posteraro, Existence and regularity results for nonlinear elliptic equations with measure data, Adv. Differential Equations 1 (1996), no. 5, 899–917. 10.57262/ade/1366896024Suche in Google Scholar

[5] D. Giachetti and M. M. Porzio, Local regularity results for minima of functionals of the calculus of variation, Nonlinear Anal. 39 (2000), no. 4, 463–482. 10.1016/S0362-546X(98)00215-6Suche in Google Scholar

[6] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud. 105, Princeton University, Princeton, 1983. 10.1515/9781400881628Suche in Google Scholar

[7] G. Moscariello, A. Passarelli di Napoli and M. M. Porzio, Existence of infinite energy solutions of degenerate elliptic equations, Z. Anal. Anwend. 31 (2012), no. 4, 393–426. 10.4171/ZAA/1466Suche in Google Scholar

[8] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189–258. 10.5802/aif.204Suche in Google Scholar

[9] G. Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Les Presses de l’Université de Montréal, Montreal, 1966. Suche in Google Scholar

Received: 2019-05-14
Revised: 2019-10-08
Accepted: 2019-10-25
Published Online: 2019-11-20
Published in Print: 2022-01-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2019-0048/html
Button zum nach oben scrollen