Abstract
In this paper we initiate the study of second-order variational problems in
the associated equation is the fully nonlinear third-order PDE
Special cases arise when
Acknowledgements
Nikos Katzourakis would like to thank Craig Evans, Robert Jensen, Roger Moser, Juan Manfredi and Jan Kristensen for their inspiring mathematical discussions and especially their illuminating remarks on
References
[1] H. Abugirda, B. Ayanbayev and N. Katzourakis, Rigidity and flatness of the image of certain classes of mappings having tangential Laplacian, preprint (2017), https://arxiv.org/pdf/1704.04492. 10.1216/rmj.2020.50.383Suche in Google Scholar
[2]
H. Abugirda and N. Katzourakis,
Existence of 1D vectorial absolute minimisers in
[3] L. Ambrosio and J. Malý, Very weak notions of differentiability, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 447–455. 10.1017/S0308210505001344Suche in Google Scholar
[4]
G. Aronsson,
Minimization problems for the functional
[5]
G. Aronsson,
Minimization problems for the functional
[6] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551–561. 10.1007/BF02591928Suche in Google Scholar
[7]
G. Aronsson,
On the partial differential equation
[8]
G. Aronsson,
Minimization problems for the functional
[9]
G. Aronsson,
On certain singular solutions of the partial differential equation
[10]
G. Aronsson,
Construction of singular solutions to the p-harmonic equation and its limit equation for
[11]
G. Aronsson and E. N. Barron,
[12]
B. Ayanbayev and N. Katzourakis,
A pointwise characterisation of the PDE system of vectorial calculus of variations in
[13]
E. N. Barron, R. R. Jensen and C. Y. Wang,
Lower semicontinuity of
[14]
E. N. Barron, R. R. Jensen and C. Y. Wang,
The Euler equation and absolute minimizers of
[15] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory, Math. Appl. 571, Kluwer Academic Publishers, Dordrecht, 2004. 10.1007/1-4020-1964-5Suche in Google Scholar
[16]
M. G. Crandall,
A visit with the
[17]
G. Croce, N. Katzourakis and G. Pisante,
[18] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd ed., Appl. Math. Sci. 78, Springer, New York, 2008. Suche in Google Scholar
[19] B. Dacorogna and P. Marcellini, Implicit Partial Differential Equations, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1999. 10.1007/978-1-4612-1562-2Suche in Google Scholar
[20] B. Dacorogna and G. Pisante, A general existence theorem for differential inclusions in the vector valued case, Port. Math. (N.S.) 62 (2005), no. 4, 421–436. Suche in Google Scholar
[21] J. M. Danskin, The theory of max–min, with applications, SIAM J. Appl. Math. 14 (1966), 641–664. 10.1137/0114053Suche in Google Scholar
[22] C. De Lellis and L. Székelyhidi, Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), no. 3, 1417–1436. 10.4007/annals.2009.170.1417Suche in Google Scholar
[23] R. E. Edwards, Functional Analysis. Theory and Applications, Dover Publications, New York, 1995. Suche in Google Scholar
[24] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010. Suche in Google Scholar
[25] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, 1992. Suche in Google Scholar
[26] C. L. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math. (2) 161 (2005), no. 1, 509–577. 10.4007/annals.2005.161.509Suche in Google Scholar
[27] L. C. Florescu and C. Godet-Thobie, Young Measures and Compactness in Measure Spaces, De Gruyter, Berlin, 2012. 10.1515/9783110280517Suche in Google Scholar
[28]
I. Fonseca and G. Leoni,
Modern Methods in the Calculus of Variations:
[29] A. Gastel and C. Scheven, Regularity of polyharmonic maps in the critical dimension, Comm. Anal. Geom. 17 (2009), no. 2, 185–226. 10.4310/CAG.2009.v17.n2.a2Suche in Google Scholar
[30] M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, 2nd ed., Appunti. Sc. Norm. Super. Pisa (N. S.) 11, Edizioni della Normale, Pisa, 2012. 10.1007/978-88-7642-443-4Suche in Google Scholar
[31] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics Math., Springer, Berlin, 2001. 10.1007/978-3-642-61798-0Suche in Google Scholar
[32] P. Hornung and R. Moser, Intrinsically p-biharmonic maps, Calc. Var. Partial Differential Equations 51 (2014), no. 3–4, 597–620. 10.1007/s00526-013-0688-3Suche in Google Scholar
[33]
N. Katzourakis,
[34]
N. Katzourakis,
Explicit 2D
[35]
N. Katzourakis,
[36]
N. Katzourakis,
On the structure of
[37]
N. Katzourakis,
An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in
[38]
N. Katzourakis,
Nonuniqueness in vector-valued calculus of variations in
[39]
N. Katzourakis,
Optimal
[40]
N. Katzourakis,
A characterisation of
[41]
N. Katzourakis,
Absolutely minimising generalised solutions to the equations of vectorial calculus of variations in
[42] N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems, J. Differential Equations 263 (2017), no. 1, 641–686. 10.1016/j.jde.2017.02.048Suche in Google Scholar
[43]
N. Katzourakis,
Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in
[44]
N. Katzourakis and T. Pryer,
On the numerical approximation of
[45]
N. Katzourakis and T. Pryer,
On the numerical approximation of p-biharmonic and
[46]
J. Kristensen and F. Rindler,
Characterization of generalized gradient Young measures generated by sequences in
[47] O. Lakkis and T. Pryer, A finite element method for nonlinear elliptic problems, SIAM J. Sci. Comput. 35 (2013), no. 4, A2025–A2045. 10.1137/120887655Suche in Google Scholar
[48] O. Lakkis and T. Pryer, An adaptive finite element method for the infinity Laplacian, Numerical Mathematics and Advanced Applications – ENUMATH 2013, Lect. Notes Comput. Sci. Eng. 103, Springer, Cham (2015), 283–291. 10.1007/978-3-319-10705-9_28Suche in Google Scholar
[49] B. Malgrange, Ideals of Differentiable Functions, Tata Inst. Fund. Res. Stud. Math. 3, Tata Institute of Fundamental Research, Bombay, 1967. Suche in Google Scholar
[50] R. Moser, Regularity of minimizing extrinsic polyharmonic maps in the critical dimension, Manuscripta Math. 131 (2010), no. 3–7, 475–485. 10.1007/s00229-010-0331-ySuche in Google Scholar
[51] R. Moser and H. Schwetlick, Minimizers of a weighted maximum of the Gauss curvature, Ann. Global Anal. Geom. 41 (2012), no. 2, 199–207. 10.1007/s10455-011-9278-9Suche in Google Scholar
[52] P. Pedregal, Parametrized Measures and Variational Principles, Progr. Nonlinear Differential Equations Appl. 30, Birkhäuser, Basel, 1997. 10.1007/978-3-0348-8886-8Suche in Google Scholar
[53] T. Pryer, On the finite element approximation of infinity-harmonic functions, Proc. Roy. Soc. Edinburgh Sect. A, to appear. Suche in Google Scholar
[54] Z. N. Sakellaris, Minimization of scalar curvature in conformal geometry, Ann. Global Anal. Geom. 51 (2017), no. 1, 73–89. 10.1007/s10455-016-9524-2Suche in Google Scholar
[55] M. Valadier, Young measures, Methods of Nonconvex Analysis (Varenna 1989), Lecture Notes in Math. 1446, Springer, Berlin (1990), 152–188. 10.1007/BFb0084935Suche in Google Scholar
[56] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. 10.1007/978-1-4612-2972-8_14Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston